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Surface homeomorphisms

homeomorphism ¢ : § — 8, where 8 is a compact orientable
surface without boundary, such as 2-torus:

o and ¥ are isotopic if 1 can be continuously ‘reached’ from ¢.
Write ¢ ~ 1.

)
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Thurston—Nielsen classification theorem

0 is isotopic to a homeomorphism ¢’, where ¢’ is in one of the
following three categories:

1. finite-order: for some integer k > 0, % ~ identity:

2. reducible: ¢’ leaves invariant a disjoint union of essential
simple closed curves, called reducing curves;

3. pseudo-Anosov: ¢’ leaves invariant a pair of transverse
measured singular foliations, F* and 3, such
that (T, 1) = (T, Ap") and ¢'(F°, %) = (F°, A7 1prf),
for dilatation A € Ry, A > 1.

The three categories characterise the isotopy class of .

Focus on number 3 (most interesting case).
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A singular foliation

The ‘pseudo’ in pseudo-Anosov refers to the fact that the foliations
can have a finite number of pronged singularities.

3-pronged singularity
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The Minimizer problem (‘Systole’)

On a given surface S, which pA has the least \?
Known to exist (Thurston);

Punctured discs: Known for n = 3 to 7 [Song et al. (2002); Ham
& Song (2007); Lanneau & Thiffeault (2009a,b, 2010)];

Minimizer is simple for n odd [Hironaka & Kin (2006)], though
not proved in general;

Surfaces: known for genus 2 [Zhirov (1995); Cho & Ham (2008);
Lanneau & Thiffeault (2010)].
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Orientable minimizer

No punctures: surface of genus g;
If the foliation is orientable, then things are much simpler;
Action of the pA on first homology captures dilatation J;

Polynomials of degree 2g;
Procedure:

e We have a guess for the minimizer;

e Find all integer-coefficient, reciprocal polynomials that have
largest root smaller than A;

e Show that they can’t correspond to pAs;

e For the smallest one that can, construct pA.

To appear in Ann. Inst. Fourier (2010). See also article in
Dynamical Systems Magazine.

6
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Newton's formulas

We need an efficient way to bound the number of polynomials with
largest root smaller than A. Given a reciprocal polynomial

P(x) = x84+ a x4 P tax+1

we have Newton's formulas for the traces,

Z amTr( — kay,

where
e ¢ is a (hypothetical) pA associated with P(x);

e ¢, is the matrix giving the action of the pA ¢ on first
homology;

o Tr(¢.) is its trace.
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Bounding the traces
The trace satisfies

iwn + 279

m=1

Tr(¢%)| = <g(r'+r )

where A, are the roots of ¢, and r = maxm,(|Am])-

Bound Tr(¢X) with r < X\, k=1,...,g;

Use these g traces and Newton's formulas to construct
candidate P(x);

Overwhelming majority have fractional coeffs — discard!

Carefully check the remaining polynomials:
e |Is their largest root real?
e Is it strictly greater than all the other roots?
o Is it really less than A7

Largest tractable case: g = 8 (10%? polynomials).
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Lefschetz's fixed point theorem

This procedure still leaves a fair number of polynomials — though
not enormous (10's to 100's, even for g = 8.)

The next step involves using Lefschetz’s fixed point theorem to
eliminate more polynomials:

L(¢)=2-Ti()= > Ind(¢,p)
pEFix(¢)
where

o L(¢) is the Lefschetz number;
e Fix(¢) is set of fixed points of ¢;
e Ind(¢, p) is index of ¢ at p.

We can easily compute L(¢X) for every iterate using Newton's
formula.
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Topological index at a fixed point

The index is defined as the number of turns of a vector joining x
to ¢(x) as x travels counterclockwise around a small circle.

For this case, each sector can map to itself (left, index
1—6 = —5) or to one of two other sectors (right, index +1).

10/15



Eliminating polynomials

Outline of procedure: for a surface of genus g,
e Use the Euler—Poincaré formula to list possible singularity
data for the foliations;

e For each singularity data, compute possible contributions to
the index (depending on how the singularities and their
separatrices are permuted);

e Check if index is consistent with Lefschetz's theorem.

With this, we can reduce the number of polynomials to one or two!
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Minimizers for orientable foliations

Our approach gives lower bound. Construct the pA explicitly to prove minimal.

g polynomial minimizer
2 X -X3-X?2-X+1 1.72208 1
3 X0-X*-X3-X?+1 1.40127 2
4 X8 X5 - X*-X3+1 1.28064 2
5 X0 4 X% - X7 X0 -X> - X*- X34 X+1 1.176283
6 X2 - XT-X0_-X541 > 1.17628 4
7OXMW X X0 - X8 XT X6 - X544 X+1 1.11548°
8 XXX _X"+1 1.12876 ©

L Zhirov (1995)’s result; also for nonorientable [Lanneau—T];

2 Constructed by Lanneau-T;

3 Lehmer's number; constructed by Leininger (2004)'s pA;

4 Genus 6 is the first nondecreasing case. No explicitly construction of pA;

5 Constructed by Aaber & Dunfield (2010);

6

Constructed by Hironaka (2009).
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Question

Examining the cases with even g leads to a natural question:

Is the minimum value of the dilatation of pseudo-Anosov
homeomorphisms on a genus g surface, for g even, with
orientable invariant foliations, equal to the largest root of
the polynomial X%& — X&+1 — x& — x&=1 117

This would imply that the minimum dilatation asymptotes
to (Golden ratio)?/¢ for g > 1.

This appears to be the ‘sparsest’ reciprocal polynomial that also
satisfies the Lefschetz formula. Don't know the pA in general,
however.
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