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Surface homeomorphisms

homeomorphism ϕ : S→ S, where S is a compact orientable
surface without boundary, such as 2-torus:

ϕ and ψ are isotopic if ψ can be continuously ‘reached’ from ϕ.
Write ϕ ' ψ.
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Thurston–Nielsen classification theorem

ϕ is isotopic to a homeomorphism ϕ′, where ϕ′ is in one of the
following three categories:

1. finite-order: for some integer k > 0, ϕ′k ' identity;

2. reducible: ϕ′ leaves invariant a disjoint union of essential
simple closed curves, called reducing curves;

3. pseudo-Anosov: ϕ′ leaves invariant a pair of transverse
measured singular foliations, Fu and Fs, such
that ϕ′(Fu, µu) = (Fu, λ µu) and ϕ′(Fs, µs) = (Fs, λ−1µs),
for dilatation λ ∈ R+, λ > 1.

The three categories characterise the isotopy class of ϕ.

Focus on number 3 (most interesting case).
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A singular foliation

The ‘pseudo’ in pseudo-Anosov refers to the fact that the foliations
can have a finite number of pronged singularities.

3-pronged singularity
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The Minimizer problem (‘Systole’)

• On a given surface S, which pA has the least λ?

• Known to exist (Thurston);

• Punctured discs: Known for n = 3 to 7 [Song et al. (2002); Ham

& Song (2007); Lanneau & Thiffeault (2009a,b, 2010)];

• Minimizer is simple for n odd [Hironaka & Kin (2006)], though
not proved in general;

• Surfaces: known for genus 2 [Zhirov (1995); Cho & Ham (2008);

Lanneau & Thiffeault (2010)].
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Orientable minimizer

• No punctures: surface of genus g ;

• If the foliation is orientable, then things are much simpler;

• Action of the pA on first homology captures dilatation λ;

• Polynomials of degree 2g ;

• Procedure:
• We have a guess for the minimizer;
• Find all integer-coefficient, reciprocal polynomials that have

largest root smaller than λ;
• Show that they can’t correspond to pAs;
• For the smallest one that can, construct pA.

• To appear in Ann. Inst. Fourier (2010). See also article in
Dynamical Systems Magazine.
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Newton’s formulas

We need an efficient way to bound the number of polynomials with
largest root smaller than λ. Given a reciprocal polynomial

P(x) = x2g + a1 x2g−1 + ...+ a2 x2 + a1 x + 1

we have Newton’s formulas for the traces,

Tr(φk
∗) = −

k−1∑
m=1

amTr(φk−m
∗ )− kak ,

where

• φ is a (hypothetical) pA associated with P(x);

• φ∗ is the matrix giving the action of the pA φ on first
homology;

• Tr(φ∗) is its trace.
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Bounding the traces
The trace satisfies

|Tr(φk
∗)| =

∣∣∣∣ g∑
m=1

(λk
m + λ−k

m )

∣∣∣∣ ≤ g(rk + r−k )

where λm are the roots of φ∗, and r = maxm(|λm|).

• Bound Tr(φk
∗) with r < λ, k = 1, . . . , g ;

• Use these g traces and Newton’s formulas to construct
candidate P(x);

• Overwhelming majority have fractional coeffs → discard!

• Carefully check the remaining polynomials:
• Is their largest root real?
• Is it strictly greater than all the other roots?
• Is it really less than λ?

• Largest tractable case: g = 8 (1012 polynomials).
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Lefschetz’s fixed point theorem

This procedure still leaves a fair number of polynomials — though
not enormous (10’s to 100’s, even for g = 8.)
The next step involves using Lefschetz’s fixed point theorem to
eliminate more polynomials:

L(φ) = 2− Tr(φ∗) =
∑

p∈Fix(φ)

Ind(φ, p)

where

• L(φ) is the Lefschetz number;

• Fix(φ) is set of fixed points of φ;

• Ind(φ, p) is index of φ at p.

We can easily compute L(φk ) for every iterate using Newton’s
formula.
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Topological index at a fixed point

The index is defined as the number of turns of a vector joining x
to φ(x) as x travels counterclockwise around a small circle.

For this case, each sector can map to itself (left, index
1− 6 = −5) or to one of two other sectors (right, index +1).
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Eliminating polynomials

Outline of procedure: for a surface of genus g ,

• Use the Euler–Poincaré formula to list possible singularity
data for the foliations;

• For each singularity data, compute possible contributions to
the index (depending on how the singularities and their
separatrices are permuted);

• Check if index is consistent with Lefschetz’s theorem.

With this, we can reduce the number of polynomials to one or two!
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Minimizers for orientable foliations

Our approach gives lower bound. Construct the pA explicitly to prove minimal.

g polynomial minimizer

2 X 4 − X 3 − X 2 − X + 1 1.72208 1

3 X 6 − X 4 − X 3 − X 2 + 1 1.40127 2

4 X 8 − X 5 − X 4 − X 3 + 1 1.28064 2

5 X 10 + X 9 − X 7 − X 6 − X 5 − X 4 − X 3 + X + 1 1.17628 3

6 X 12 − X 7 − X 6 − X 5 + 1 & 1.17628 4

7 X 14 + X 13 − X 9 − X 8 − X 7 − X 6 − X 5 + X + 1 1.11548 5

8 X 16 − X 9 − X 8 − X 7 + 1 1.12876 6

1 Zhirov (1995)’s result; also for nonorientable [Lanneau–T];
2 Constructed by Lanneau–T;
3 Lehmer’s number; constructed by Leininger (2004)’s pA;
4 Genus 6 is the first nondecreasing case. No explicitly construction of pA;
5 Constructed by Aaber & Dunfield (2010);
6 Constructed by Hironaka (2009).
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Question

Examining the cases with even g leads to a natural question:

Is the minimum value of the dilatation of pseudo-Anosov
homeomorphisms on a genus g surface, for g even, with
orientable invariant foliations, equal to the largest root of
the polynomial X 2g − X g+1 − X g − X g−1 + 1?

This would imply that the minimum dilatation asymptotes
to (Golden ratio)2/g for g � 1.

This appears to be the ‘sparsest’ reciprocal polynomial that also
satisfies the Lefschetz formula. Don’t know the pA in general,
however.
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