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hagfish factoids

• Not the prettiest fish.

• An ancient fish: no teeth.

• Only known living animal that
has a skull but not a vertebral
column.

• 77 species, average 50 cm.

• Eats worms as well as dead fish,
by burrowing into their carcass.
They can feed through their
own skin.
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sliming predators

play movie

[Zintzen, V., Roberts, C. D., Anderson, M. J., Stewart, A. L., Struthers, C. D., &

Harvey, E. S. (2011). Scientific Reports, 1, 131]
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http://www.math.wisc.edu/~jeanluc/movies/hagfish_sliming.mp4


knotting

youtube movie (see around 1 min mark)
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http://www.youtube.com/watch_popup?v=BcsG8DYWx5M&hd=1


slime in the lab: a promising material

youtube movie
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http://www.youtube.com/watch_popup?v=Bb2EOP3ohnE&hd=1


so what’s inside the slime?

• .002% thread skein

• .0015% mucin

• 99.996% seawater (!)

[Fudge, D. S., Levy, N., Chiu, S., & Gosline, J. M. (2005). J. Exp. Biol. 208, 4613–4625]
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what’s a skein?

A skein consists of thread rolled
into a ball.

Skeins are about 0.1 mm in size.

Thread length: about 15 cm!

The packing fraction is close to 1.

[Fernholm, B. (1981). Acta Zool. 62 (3), 137–145]
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what happens when the skeins unravel?

The threads form a network, which
gives the slime its properties.

The thread network determines the
rheology of the slime.

[Fudge et al. (2005)]
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what happens when the skeins unravel?

Here the skein is stuck to a glass slide:

play movie [experiment by Randy Ewoldt]
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http://www.math.wisc.edu/~jeanluc/movies/HagfishSlimeWhole005-comp-Unraveling-Crop01.mp4


similar to experiments with tape

The dynamics at the peeling points can get very complicated and can even
lead to triboluminescence.

[Figures from Cortet, P.-P., Ciccotti, M., & Vanel, L. (2007). J. Stat. Mech. 2007,

P03005 and Camara, C. G., Escobar, J. V., Hird, J. R., & Putterman, S. J. (2008).

Nature, 455, 1089–1092; see also Maugis & Barquins (1988); De et al. (2004).]
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peeling tape: work-energy theorem

Work-energy theorem of Hong & Yue (1995):

U̇ = (T − F0(V ))V

• U̇ is the rate of change in total energy of the system;

• T is the force drawing out the thread;

• F0(V ) is a velocity-dependent peeling force.

Neglect changes to the elastic energy of the tape (U̇ = 0):

T = F0(V )
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peeling force

A simple model for the peeling force is

F0(V ) = αVm, 0 ≤ m ≤ 1

which we solve for the peeling velocity:

V = (T/α)1/m

The total length L(t) of thread drawn out thus satisfies

L̇ = (T/α)1/m
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mass conservation

Relate R, the skein radius, and L using mass conservation:

d

dt

(
4
3πηR

3 + πr2L
)

= 0 =⇒ L̇ = −4ηR2Ṙ/r2,

where r is the thread radius and η ≤ 1 is the packing fraction of thread
into the spherical skein.

Under constant tension T , we can easily solve for the depletion time

tdep =
4ηR3

0

3r2
(T/α)1/m

to run out of thread, given an initial skein radius R0.
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hydrodynamics

So far there is no fluid.

To model the effect of the fluid on the thread, we use resistive force theory:

8πµδ (xt − u) = (1 + 2δ)Txss + 2Tsxs (force balance)

2Tss − (1 + 2δ)T |xss |2 = −8πµδxs · us (torque balance)

where x(s, t) is the Eulerian position of a thread segment as a function of
the Lagrangian label s (arc length).

δ = −1/ log(ε2e) is the slenderness parameter, ε = r/L is the slenderness
ratio, with r the thread radius and L its length.

(Resistive force theory differs from slender body theory in the neglect of
the nonlocal term, which is appropriate when the thread is fairly straight.)
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a simple flow

Assume the skein is immersed a simple 1D flow

u(x , y , t) = u(x , t) x̂

at the origin. The thread remains straight and aligned with the horizontal.

Resistive force theory for a straight filament then says

8πµδ (xt − u) = 2Tsxs

2Tss = −8πµδxs · us

Appropriate boundary conditions have to be imposed at the ends of the
thread.
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unraveling the skein

initial thread unraveled thread

s = 0 s = L0 s = L skein

• The Lagrangian arc length parameter values s ∈ [0, L0] correspond to
the ‘initial’ piece of thread.

• The thread added by unraveling is s ∈ (L0, L(t)].
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a tethered skein

Let’s start with a skein that is held in place at X, with thread unraveling
due to hydrodynamics. The boundary conditions are then

T (0, t) = 0, (free end); x(L(t), t) = X, (tethered end).

We need one more boundary condition on T , which is obtained by taking
the force balance equation, evaluating it at s = L(t), and using

d

dt
x(s = L, t) = xt + xs L̇ =

d

dt
X = 0

We obtain
Ts = −4πµδ

(
L̇ + xs · u

)
at s = L.
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tethered skein equation

We skip some details of the derivation. Once we have the force at the
tether point we can use it in our peeling law F = αVm.

In the end we get the equation

(L̇)m = −4πµδ

α
L
(
ūX (L) + L̇

)
.

where

ūX (L, t) :=
1

L

∫ X

X−L
u(x , t)dx

is the thread-averaged velocity.

Not surprisingly, the force is determined by the average of the velocity on
the filament.

This nonlinear ODE cannot be solved analytically, except in some
asymptotic limits for special choices of m.
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numerical solution for extensional flow

Typical simulation for an extensional flow u(x , t) = λ(t)x :
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The skein unravels suddenly once it gets long enough.
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a free skein

A more relevant situation is to have the skein-thread system free to move.

The tension at s = L(t) — the end unraveling from the skein — is equal
to the drag force on a sphere of radius R:

T = 6πµR xs · (u− xt), s = L(t).

The other end is free:
T = 0, s = 0.

20 / 26



the unraveling rate equation

The Eulerian position of a thread element is

x = X (t)− L(t) + s

where X (t) is the position of the skein.

Hence, using the tension in our peeling law:

(L̇)m = 6πµRα−1(L̇− Ẋ + u(X , t))

This is not closed: we need to find a separate equation for Ẋ . We do this
by solving the equations of resistive force theory.
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the closed system

Skipping some algebraic details, we eventually obtain the system of
differential equations

(L̇)m = 6πµα−1R ū(X , L, t)

Ẋ = L̇ + u(X , t)− ū(X , L, t)

where

ū(X , L, t) =
1

L + (3R/2δ)

∫ X

X−L
{u(X , t)− u(x , t)} dx

Note that R and L are related by mass conservation.
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extensional flow

For an extensional flow
u(x , t) = λ(t)x

we can reduce the system to one ODE:

(L̇)m = 3πµα−1λRL2/(L + (3R/2δ))

where again R = R(L), and also δ = δ(L) (slenderness parameter).

[Recall: δ = −1/ log(ε2e) with ε = r/L the slenderness ratio.]

Again, this cannot be solved analytically, except in some asymptotic limits
for special choices of m.
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numerical solution
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Numerical solution for r = 1µm, R0 = 50µm, L0 = 2R0, µ = 1.5× 10−3 Pa s,

m = 1/3, α = 8× 10−4 N (m/s)−1/3, η = 1, λ = 1 s−1.
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numerical solution: discussion

• The depletion time is about 103 s.

• Problem: this is 3 orders of magnitude too long!

• Possible issues:
• No real idea what peeling force parameter values to use. (Here used

educated guess based on tape.) Changing these can radically alter the
results.

• Maybe adjust the drag force if the filament doesn’t remain straight: go
beyond resistive force to full slender-body theory.

• Are the mucins important? Experiments suggest so but their role is
unclear. They might catalyze the peeling somehow, or stick to the
filament and increase the drag force.

• Proper rheological experiments needed (Randy Ewoldt)!
• Use a more ‘mixing’ flow, closer to turbulence.

• Future research: network created by threads.
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