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The Taffy Puller

This may not look like
it has much to do
with stirring, but no-
tice how the taffy is
stretched and folded ex-
ponentially.

Often the hydrodynam-
ics are less important
than the topological na-
ture of the rod motion.

[Movie by M. D. Finn]

[movie 1]
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The mixograph

Experimental device for kneading bread dough:

[Department of Food Science, University of Wisconsin. Photos by J-LT.]
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The mixograph as a braid

Encode the topological in-
formation as a sequence
of generators of the Artin
braid group Bn.

Equivalent to the 7-braid σ3σ2σ3σ5σ
−1
6 σ2σ3σ4σ3σ

−1
1 σ−1

2 σ5
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Experiment of Boyland, Aref & Stremler

[movie 2] [movie 3]

[P. L. Boyland, H. Aref, and M. A. Stremler, J. Fluid Mech. 403, 277 (2000)]

[Simulations by M. D. Finn.]
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Mathematical description

Focus on closed systems.

Periodic stirring protocols in two dimensions can be described by a
homeomorphism ϕ : S→ S, where S is a surface.

For instance, in a closed circular container,

• ϕ describes the mapping of fluid elements after one full period
of stirring, obtained by solving the Stokes equation;

• S is the disc with holes in it, corresponding to the stirring rods.

Goal: Topological characterization of ϕ.
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Three main ingredients

1. The Thurston–Nielsen classification theorem (idealized ϕ);

2. Handel’s isotopy stability theorem (link to real ϕ);

3. Topological entropy (quantitative measure of mixing).
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Isotopy

ϕ and ψ are isotopic if ψ can be continuously ‘reached’ from ϕ
without moving the rods. Write ϕ ' ψ.

(Defines isotopy classes.)

Convenient to think of isotopy in terms of material loops. Isotopic
maps act the same way on loops (up to continuous deformation).

(Loops will always mean essential loops.)
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Thurston–Nielsen classification theorem

ϕ is isotopic to a homeomorphism ψ, where ψ is in one of the
following three categories:

1. finite-order: for some integer k > 0, ψk ' identity;

2. reducible: ψ leaves invariant a disjoint union of essential
simple closed curves, called reducing curves;

3. pseudo-Anosov: ψ leaves invariant a pair of transverse
measured singular foliations, Fu and Fs, such
that ψ(Fu, µu) = (Fu, λ µu) and ψ(Fs, µs) = (Fs, λ−1µs), for
dilatation λ ∈ R+, λ > 1.

The three categories characterize the isotopy class of ϕ.
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TN classification theorem (cartoon)

ϕ is isotopic to a homeomorphism ψ, where ψ is in one of the
following three categories:

1. finite-order (i.e., periodic);

2. reducible (can decompose into different bits);

3. pseudo-Anosov: ψ stretches all loops at an exponential
rate log λ, called the topological entropy. Any loop eventually
traces out the unstable foliation.

Number 3 is the one we want for good mixing
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The Topological program

• Consider a motion of stirring elements, such as rods.

• Determine if the motion is isotopic to a pseudo-Anosov
mapping.

• Compute topological quantities, such as foliation, entropy, etc.

• Analyze and optimize.
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Train tracks: Computing entropy and foliations

‘Figure-8’ motion: σ−2
2 σ2

1

=⇒

exp. by E. Gouillart and O. Dauchot

Thurston introduced train tracks as a way of characterizing the
measured foliation. The name stems from the ‘cusps’ that look like
train switches.
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Train track map for figure-eight

a 7→ a 2̄ ā 1̄ a b 3̄ b̄ ā 1 a , b 7→ 2̄ ā 1̄ a b

Easy to show that this map is efficient: under repeated iteration,
cancellations of the type a ā or b b̄ never occur.

There are algorithms, such as Bestvina & Handel (1995), to find
efficient train tracks. (Toby Hall has an implementation in C++.)
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Topological Entropy

As the TT map is iterated, the number of symbols grows
exponentially, at a rate given by the topological entropy, log λ.
This is a lower bound on the minimal length of a material line
caught on the rods.

Find from the TT map by Abelianizing: count the number of
occurences of a and b, and write as matrix:(

a
b

)
7→
(

5 2
2 1

)(
a
b

)
The largest eigenvalue of the matrix is λ = (1 +

√
2)2 ' 5.83.

Hence, asymptotically, the length of the ‘blob’ is multiplied by 5.83
for each full stirring period.
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Optimization

• Consider periodic lattice of rods.

• Move all the rods such that they execute the Boyland et al.
(2000) rod motion (Thiffeault & Finn, 2006; Finn & Thiffeault,

2011).

• The dilatation per period is χ2, where χ = 1 +
√

2 is the
Silver Ratio!

• This is optimal for a periodic lattice of two rods (Follows
from D’Alessandro et al. (1999)).
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Silver Mixers
• The designs with dilatation given by the silver ratio can be

realized with simple gears.
• All the rods move at once: very efficient.

[movie 4]
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Silver Mixers: Building one out of Legos
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Four Rods

[movie 5] [movie 6]

See [M. D. Finn and J.-L. Thiffeault, SIAM Review 53, 723–743 (2011)] for
proofs, heavily influenced by [Boyland & Harrington (2011)]’s work on
π1-stirrers.
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Oceanic float trajectories
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Oceanic floats: Data analysis

What can we measure?

• Single-particle dispersion (not a good use of all data)

• Correlation functions (what do they mean?)

• Lyapunov exponents (some luck needed!)

Another possibility:

Compute the braid group generators σi for the float trajectories
(convert to a sequence of symbols), then look at how loops grow.
Obtain a topological entropy for the motion (similar to Lyapunov
exponent).
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Iterating a loop

It is well-known that the entropy can be obtained by applying the
motion of the punctures to a closed curve (loop) repeatedly, and
measuring the growth of the length of the loop (Bowen, 1978).

The problem is twofold:

1. Need to keep track of the loop, since its length is growing
exponentially;

2. Need a simple way of transforming the loop according to the
motion of the punctures.

However, simple closed curves are easy objects to manipulate in
2D. Since they cannot self-intersect, we can describe them
topologically with very few numbers.
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Solution to problem 1: Loop coordinates

What saves us is that a closed loop can be uniquely reconstructed
from the number of intersections with a set of curves. For instance,
the Dynnikov coordinates involve intersections with vertical lines:

2

30 0

1
4 4 4

2 2
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Crossing numbers

Label the crossing numbers:
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Dynnikov coordinates

Now take the difference of crossing numbers:

ai = 1
2 (µ2i − µ2i−1) ,

bi = 1
2 (νi − νi+1)

for i = 1, . . . , n − 2.

The vector of length (2n − 4),

u = (a1, . . . , an−2, b1, . . . , bn−2)

is called the Dynnikov coordinates of a loop.

There is a one-to-one correspondence between closed loops and
these coordinates: you can’t do it with fewer than 2n− 4 numbers.
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Intersection number

A useful formula gives the minimum intersection number with the
‘horizontal axis’:

L(u) = |a1|+ |an−2|+
n−3∑
i=1

|ai+1 − ai |+
n−1∑
i=0

|bi | ,

For example, the loop on the
left has L = 12.

The crossing number grows
proportionally to the the
length.
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Solution to problem 2: Action on coordinates

Moving the punctures according to a braid generator changes some
crossing numbers:

�1
-1

There is an explicit formula for the change in the coordinates!
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Action on loop coordinates

The update rules for σi acting on a loop with coordinates (a,b)
can be written

a′i−1 = ai−1 − b+
i−1 −

(
b+

i + ci−1

)+
,

b′i−1 = bi + c−i−1 ,

a′i = ai − b−i −
(
b−i−1 − ci−1

)−
,

b′i = bi−1 − c−i−1 ,

where
f + := max(f , 0), f − := min(f , 0).

ci−1 := ai−1 − ai − b+
i + b−i−1 .

This is called a piecewise-linear action.
Easy to code up (see for example Thiffeault (2010)).
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Growth of L

For a specific rod motion, say as given by the braid
σ−1

3 σ−1
2 σ−1

3 σ2σ1, we can easily see the exponential growth of L
and thus measure the entropy:
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Growth of L (2)
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m is the number of times the braid acted on the initial loop.

[Moussafir (2006)]
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Oceanic floats: Entropy
10 floats from Davis’ Labrador sea data:

0 100 200 300
10

0

10
1

10
2

t (days)

L
(u

)
   entropy = 0.0171

crossings = 126

Floats have an entanglement time of about 50 days — timescale
for horizontal stirring.

Source: WOCE subsurface float data assembly center (2004)
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Some research directions

• The nature of the isotopy between the pA and real system.

• Sharpness of the entropy bound (with Sarah Tumasz:
arXiv.org/abs/1204.6730).

• Computational methods for isotopy class (random
entanglements of trajectories – LCS method, see Allshouse &
Thiffeault (2012)).

• ‘Designing’ for topological chaos (see Stremler & Chen
(2007)).

• Combine with other measures, e.g., mix-norms (Mathew
et al., 2005; Lin et al., 2011; Thiffeault, 2012).

• 3D?! (lots of missing theory)
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