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Sample motivation

e The earth is differentially heated: there is a constant input of
‘fresh’ temperature fluctuations.

e Stirring and mixing suppress fluctuations.

e How does the steady-state level of fluctuations depend on the
stirring and the source distribution?



Introduction

Outline

Advection & diffusion with steady sources & sinks.

Quantify mixing efficiency on different length scales.

Estimating the mixing efficiencies via bounds.

Source dependence of the efficiencies.

Optimal flows that ‘saturate’ the bounds.

Scalings for shear flows.

Summary & discussion.
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Advection, diffusion and all that

o Advection-diffusion of a passive scalar 6(x, t) maintained by a
steady and spatially mean zero body source:

%+U~V0:/€A9+s(x)

e Stirring field u(x, t) is given, divergence-free (V - u = 0) with
finite time-averaged kinetic energy (L? norm).

e Statistically stationary, homogeneous, isotropic flows.



Introduction

Multiscale variances

e Variance is natural measure of the well-mixedness of the
scalar.

e Weight on different length scales to produces family of
space-time averaged variances (|VP0|?):

intermediate scales for p =0 : (0% =

small scales for p =1 (IV0)?) = <Z K2)0(k)|?
k

(k)2
large scales for p = —1: <|V*19‘2> _ <Z |6(k)|
k

e Better mixing <= reduced variance.
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Mixing efficiencies

e Dimensionless mixing efficiencies compare variances with and
without stirring

(VPP
Mo = ( (VP0]2) >

where the purely-diffusive solution is

e Péclet number is the dimensionless gauge of the stirring

strength
u

K

Pe :

where U? = (Jul?).

e Challenge: estimate My(Pe) ...what might be expected?
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Equivalent diffusivity & eddy diffusivity

Equivalent diffusivity is the molecular diffusion necessary
to achieve the same variance in the absense of stirring:

Keq,p = K Mp

The case of large-scale source and small-scale stirring is the
setting for homogenization theory to estimate req.

Classical mixing length theory = Eddy diffusivity Keqay = Ul
where £ is a characteristic length scale of the flow.

Guess:
~ oy UL ¢
Keqp ™ Keddy = Ul =k == 7 =k Pe = M, < Pe.

My ~ Pe is “classical” scaling; any other is “anomalous”.
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Estimating the mixing efficiencies

e Multiply ADE by smooth, time-independent function ¢(x),
then space-time average & integrate by parts:

((up + V) - VO) = (ps)
e — Variational problem for lower-bounds for each p:

([VPO?) > maxmin {(IVPOP) | ((up+ KV) - V) = (ps)}

o TD&G (JFM 2004) derived simple estimates for p = 0 for
general u, s € L2, without variation over p: M, <c, Pe.



Efficiency bounds

Bounds for SHIF

e Statistically Stationary, Homogeneous, Isotropic Flows (SHIF):

- U?
u,-(x, ) =0, u,-(x, ~)UJ(X, ) = 75U

ouj(x, - Ou;(x, -) du;(x, - 2
ol =0, RIS G

e A= U/l ~ Taylor microscale of turbulence theory.

0jj

e Variational upper bounds on M,(Pe) can be evaluated exactly
for SHIFs!



Efficiency bounds

e Gradient variance

8(k)P
P e DR O )
— — _ 2 21—-1 2
(s{—A + U?/K2}"1s) (Zk kz‘i2‘—(|—‘13e2)
e Variance
15(k) P
2
i < < s ()
(s{a? — L A}-1s) <Z 5(K)2 )
k K444 Pe2k2L2 Pe2k2L2

e Inverse-gradient variance

2 15( EQIE
Cc-1 {S} < M_ (Z 4616 ) (; k6L6—|- Pe2§4L4 i Pe2k2[4

Ad




Source dependence

Source dependence

e For “smooth” sources, i.e., s(x) € L2, as Pe — oo,

My < pey|lSP/RLE 6 UL
- > 15(k)[2 L P
> 5(k)[2/k4L2 lo Uty
< - 0 _ =
Yo = Perlas siop/e = T T h
M,1 < Pe Zk|§(k)|2/k6L2 _ Peg;l _ Uf_l.
B d > [3(K) 2/ (K* + &) L K

e (Classical mixing length scaling may hold but. ..

e Mixing lengths ¢, defining the equivalent diffusivities generally
depend on scales in source rather than just those in the flow.



Introduction Efficiency bounds Source dependence Saturation Shear Flows Conclusions

e High-Pe scalings for “rough” sources with many small scales,
i.e., for s(x) ¢ L2, are necessarily anomalous.

e Measure-valued (e.g., delta-function) sources or sinks =

d=2: My=1  My<Pe/(logPe)t’?  M_; < Pe
d=3: My=1 My< Pel/? M_; < Pe



Source dependence

Source dependence of scalings

e D&T (PRL submitted 2006) summarize the scalings of the
mixing efficiency bounds for general “rough” sources when
spectrum |$(k)| decays ~ k=7, v >0 (y > d/2 = “smooth").

’ d=2 \ p=1 p=20 p:—l‘
v=0 1 Pe/(log Pe)'/? Pe
O0<y<x1 PeY Pe Pe
y=1 Pe/(log Pe)'/? Pe Pe
v>1 Pe Pe Pe
d=3 \ p=1 p=0 p=-1
v=0 1 Pel/? Pe
0<~y<1/2 1 PeY+1/2 Pe
y=1/2 1 Pe/(log Pe)*/? Pe
1/2 <y <3/2 PeV—1/2 Pe Pe
v =13/2 Pe/(log Pe)'/? Pe Pe
v >3/2 Pe Pe Pe




Saturation

Monochromatic bounds

e For monochromatic sources depending on a single wave
number ks:

Pe?
1< M <1
>~ 1> + k52L27
Pe?
1 < My< /1
= Mot g
Pe? Pe?
1 <M< 1
=M= \/ MPTTEREP T

e Questions:

1. can these bounds be achieved by any SHIF?
2. are they generally achieved for “typical” SHIFs?
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Saturating the bounds

e These bounds can be saturated!

e Optimal SHIF for monochromatic sources are “sweeping
flows” transporting source onto sink and vice versa (W.R.
Young).

steady wind switching
direction slowly to
achieve SHIF

e Sweeping flows not the optimal for measure valued sources.

e Note: uniform “sweeps” do not exist on the sphere!
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Zeldovich sine flow

e Alternating horizontal and vertical sine shear flows

1 1
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08| u® 08
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first half-period second half-period

e Phase selected randomly for each cycle.

e Frequently used to study fundamental mixing characteristics.
e MOVIES
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Efficiencies for monochromatic source

e Bounds and DNS results for Zeldovich sine flow:

10* 10* 10*
s710° =°10° S ST
oL oL o
10 10%2 10°
102P 10* 102P 10* 102P 10*
e e e

solid: Bound dot-dashed: PY bound dashed: DNS data

e Data scale anomalously for M; and Mj.
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Steady shear flows

Explore multiscale mixing efficiency scalings for sine flow via

quasi-steady shearing perpendicular to the source.

s = Ssin ksx.
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Consider steady shear flow u = iU cos kyy, source

Non-dimensional number indicating relative shear r = ky /ks.
Interesting limits include Pe — oo at fixed r, etc.

For r =1 and Pe increasing:
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Shear Flows
e Steady solution of ADE is of the form
0(x,y) = f(y)sin kx + g(y) cos kx.
where
—V2Ukssin(kuy)g = K [—K2f + '] + V25
V2Ukg sin(kyy)f = & [—kszg +g"].

e Internal layer analysis:
o0 [e.@]
f= Z ", &= Z €"8n
n=-1 n=-—1

where f = fUks/S, & = gUks/S, and €3 = \/2U /kks.
e Leading order the composite solutions are

Fly) ~ Usks kiéF@)’ slv)~ Usks ki5G<§> S”‘%y)

where F = r?/3f 1, and G = r2/3g 1, and § = e/r1/3k5.




Shear Flows
e Just solve “internal layer” equations
F'+¢6G+1=0 and G"—¢F=0
with
F'(0)=0=G(0), F~ 2% G~ —¢1 as £ — .

e For Pe = 1000 (¢=0.2)
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solid: exact numerical solution dashed: composite asymptotic approximation

e Leading terms capture asymptotic behavior!



Shear Flows

e Scaling of mixing efficiencies as Pe — oo

My ~ PeY/2, Mgy~ rBPe®  M_y ~ Pe+ r'/3pe®/®

10* 10* 10*
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dots: exact numerical solution  solid: asymptotic theory
dashed: ~ Pe bound scaling

e Exponents match the DNS data scalings!



Conclusions

Conclusions

Multiscale mixing efficiencies susceptible to rigorous analysis.
Upper estimates on multiscale efficiencies may be saturated.
Steady state mixing very different from transient mixing!
Source structure is crucial to Pe-scaling of efficiencies.

Can understand some flows via quasi-static analysis.

More info than just U, I generally needed.

What about more complicated sources?

What about “real” SHI-turbulence?
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Future Work

e Search for optimal stirring strategies (not necessarily SHIF)
for given source distributions by maximizing the bounds.

e Consider the problem with scalar decay.
e Extend the analysis to the sphere.

Zeldovich sine flow
with wave number 2
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Mixing on a Sphere

e Constant rotation perpendicular to equatorial heating.
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