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Sample motivation

• The earth is differentially heated: there is a constant input of
‘fresh’ temperature fluctuations.

• Stirring and mixing suppress fluctuations.

• How does the steady-state level of fluctuations depend on the
stirring and the source distribution?
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Outline

• Advection & diffusion with steady sources & sinks.

• Quantify mixing efficiency on different length scales.

• Estimating the mixing efficiencies via bounds.

• Source dependence of the efficiencies.

• Optimal flows that ‘saturate’ the bounds.

• Scalings for shear flows.

• Summary & discussion.
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Advection, diffusion and all that

• Advection-diffusion of a passive scalar θ(x, t) maintained by a
steady and spatially mean zero body source:

∂θ

∂t
+ u · ∇θ = κ∆θ + s(x)

• Stirring field u(x, t) is given, divergence-free (∇ · u = 0) with
finite time-averaged kinetic energy (L2 norm).

• Statistically stationary, homogeneous, isotropic flows.
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Multiscale variances

• Variance is natural measure of the well-mixedness of the
scalar.

• Weight on different length scales to produces family of
space-time averaged variances 〈|∇pθ|2〉:

small scales for p = 1 : 〈|∇θ|2〉 =

〈∑
k

k2|θ̂(k)|2
〉

intermediate scales for p = 0 : 〈θ2〉 =

〈∑
k

|θ̂(k)|2
〉

large scales for p = −1 : 〈|∇−1θ|2〉 =

〈∑
k

|θ̂(k)|2

k2

〉

• Better mixing ⇐⇒ reduced variance.
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Mixing efficiencies

• Dimensionless mixing efficiencies compare variances with and
without stirring

Mp :=

(
〈|∇pθ0|2〉
〈|∇pθ|2〉

)1/2

where the purely-diffusive solution is

θ0(x) = κ−1(−∆)−1s.

• Péclet number is the dimensionless gauge of the stirring
strength

Pe :=
UL

κ

where U2 = 〈|u|2〉.
• Challenge: estimate Mp(Pe) . . . what might be expected?
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Equivalent diffusivity & eddy diffusivity

• Equivalent diffusivity is the molecular diffusion necessary
to achieve the same variance in the absense of stirring:

κeq,p = κ Mp

• The case of large-scale source and small-scale stirring is the
setting for homogenization theory to estimate κeq.

• Classical mixing length theory ⇒ Eddy diffusivity κeddy = U`
where ` is a characteristic length scale of the flow.

• Guess:
κeq,p ≈ κeddy = U` = κ UL

κ
`
L = κ Pe `

L ⇒ Mp . Pe.

• Mp ∼ Pe is “classical” scaling; any other is “anomalous”.
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Estimating the mixing efficiencies

• Multiply ADE by smooth, time-independent function ϕ(x),
then space-time average & integrate by parts:

〈(uϕ + κ∇ϕ) · ∇θ〉 = 〈ϕs〉

• =⇒ Variational problem for lower-bounds for each p:

〈|∇pθ|2〉 ≥ max
ϕ

min
θ̃

{〈|∇p θ̃|2〉 | 〈(uϕ + κ∇ϕ) · ∇θ̃〉 = 〈ϕs〉}

• TD&G (JFM 2004) derived simple estimates for p = 0 for
general u, s ∈ L2, without variation over ϕ : Mp ≤ cϕ Pe.
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Bounds for SHIF

• Statistically Stationary, Homogeneous, Isotropic Flows (SHIF):

ui (x, ·) = 0, ui (x, ·)uj(x, ·) =
U2

d
δij

ui (x, ·)
∂uj(x, ·)

∂xk
= 0,

∂ui (x, ·)
∂xk

∂uj(x, ·)
∂xk

=
Γ2

d
δij

• λ = U/Γ ∼ Taylor microscale of turbulence theory.

• Variational upper bounds on Mp(Pe) can be evaluated exactly
for SHIFs!
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• Gradient variance

1 ≤ M2
1 ≤ 〈s(−∆−1)s〉

〈s{−∆ + U2/κ2}−1s〉
=

(∑
k
|ŝ(k)|2
k2L2

)
(∑

k
|ŝ(k)|2

k2L2+Pe2

)
• Variance

c0{s} ≤ M2
0 ≤ 〈s(∆−2)s〉

〈s{∆2 − U2

κ2d
∆}−1s〉

=

(∑
k
|ŝ(k)|2
k4L4

)
(∑

k
|ŝ(k)|2

k4L4+Pe2k2L2

d

)
• Inverse-gradient variance

c−1 {s} ≤ M2
−1 ≤

(∑
k

|ŝ(k)|2

k6L6

)
/

(∑
k

|ŝ(k)|2

k6L6 + Pe2k4L4

d + Pe2k2L4

λ2d

)
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Source dependence

• For “smooth” sources, i.e., s(x) ∈ L2, as Pe →∞,

M1 ≤ Pe

√∑
k |ŝ(k)|2/k2L2∑

k |ŝ(k)|2
= Pe

`1

L
=

U`1

κ
,

M0 ≤ Pe

√∑
k |ŝ(k)|2/k4L2

d
∑

k |ŝ(k)|2/k2
= Pe

`0

L
=

U`0

κ
,

M−1 ≤ Pe

√ ∑
k |ŝ(k)|2/k6L2

d
∑

k |ŝ(k)|2/(k4 + k2

λ2 )
= Pe

`−1

L
=

U`−1

κ
.

• Classical mixing length scaling may hold but. . .

• Mixing lengths `p defining the equivalent diffusivities generally
depend on scales in source rather than just those in the flow.
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• High-Pe scalings for “rough” sources with many small scales,
i.e., for s(x) /∈ L2, are necessarily anomalous.

Mt. Etna

• Measure-valued (e.g., delta-function) sources or sinks ⇒

d = 2 : M1 = 1 M0 . Pe/(log Pe)1/2 M−1 . Pe

d = 3 : M1 = 1 M0 . Pe1/2 M−1 . Pe
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Source dependence of scalings

• D&T (PRL submitted 2006) summarize the scalings of the
mixing efficiency bounds for general “rough” sources when
spectrum |ŝ(k)| decays ∼ k−γ , γ ≥ 0 (γ > d/2 ⇒ “smooth”).

d = 2 p = 1 p = 0 p = −1

γ = 0 1 Pe/(log Pe)1/2 Pe
0 < γ < 1 Peγ Pe Pe

γ = 1 Pe/(log Pe)1/2 Pe Pe
γ > 1 Pe Pe Pe

d = 3 p = 1 p = 0 p = −1

γ = 0 1 Pe1/2 Pe
0 ≤ γ < 1/2 1 Peγ+1/2 Pe

γ = 1/2 1 Pe/(log Pe)1/2 Pe
1/2 < γ < 3/2 Peγ−1/2 Pe Pe

γ = 3/2 Pe/(log Pe)1/2 Pe Pe
γ > 3/2 Pe Pe Pe
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Monochromatic bounds

• For monochromatic sources depending on a single wave
number ks :

1 ≤ M1 ≤

√
1 +

Pe2

k2
s L2

,

1 ≤ M0 ≤

√
1 +

Pe2

dk2
s L2

,

1 ≤ M−1 ≤

√
1 +

Pe2

dk2
s L2

+
Pe2

dλ2k4
s L2

• Questions:

1. can these bounds be achieved by any SHIF?
2. are they generally achieved for “typical” SHIFs?
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Saturating the bounds

• These bounds can be saturated!

• Optimal SHIF for monochromatic sources are “sweeping
flows” transporting source onto sink and vice versa (W.R.
Young).

steady wind switching
direction slowly to
achieve SHIF
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• Sweeping flows not the optimal for measure valued sources.

• Note: uniform “sweeps” do not exist on the sphere!
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Zeldovich sine flow

• Alternating horizontal and vertical sine shear flows

first half-period second half-period

• Phase selected randomly for each cycle.

• Frequently used to study fundamental mixing characteristics.

• MOVIES
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Efficiencies for monochromatic source

• Bounds and DNS results for Zeldovich sine flow:
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• Data scale anomalously for M1 and M0.
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Steady shear flows

• Explore multiscale mixing efficiency scalings for sine flow via
quasi-steady shearing perpendicular to the source.

• Consider steady shear flow u = îU cos kuy , source
s = S sin ksx .

• Non-dimensional number indicating relative shear r = ku/ks .

• Interesting limits include Pe →∞ at fixed r , etc.

• For r = 1 and Pe increasing:
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• Steady solution of ADE is of the form

θ(x , y) = f (y) sin kx + g(y) cos kx .

where

−
√

2Uks sin(kuy)g = κ
[
−k2

s f + f ′′
]
+
√

2S
√

2Uks sin(kuy)f = κ
[
−k2

s g + g ′′
]
.

• Internal layer analysis:

f̂ =
∞∑

n=−1

εn f̂n, ĝ =
∞∑

n=−1

εnĝn

where f̂ = fUks/S , ĝ = gUks/S , and ε−3 =
√

2U/κks .

• Leading order the composite solutions are

f (y) ∼ S

Uks

1

kuδ
F
(y

δ

)
, g(y) ∼ S

Uks

1

kuδ
G
(y

δ

) kuy

sin(kuy)

where F = r2/3f̂−1, and G = r2/3ĝ−1, and δ = ε/r1/3ks .
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• Just solve “internal layer” equations

F ′′ + ξG + 1 = 0 and G ′′ − ξF = 0

with

F ′(0) = 0 = G (0), F ∼ −2ξ−4, G ∼ −ξ−1 as ξ →∞.

• For Pe = 1000 (ε=0.2)
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• Leading terms capture asymptotic behavior!
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• Scaling of mixing efficiencies as Pe →∞

M1 ∼ Pe1/2, M0 ∼ r1/3Pe5/6, M−1 ∼ Pe + r1/3Pe5/6
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• Exponents match the DNS data scalings!
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Conclusions

• Multiscale mixing efficiencies susceptible to rigorous analysis.

• Upper estimates on multiscale efficiencies may be saturated.

• Steady state mixing very different from transient mixing!

• Source structure is crucial to Pe-scaling of efficiencies.

• Can understand some flows via quasi-static analysis.

• More info than just U, Γ generally needed.

• What about more complicated sources?

• What about “real” SHI-turbulence?
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Future Work

• Search for optimal stirring strategies (not necessarily SHIF)
for given source distributions by maximizing the bounds.

• Consider the problem with scalar decay.

• Extend the analysis to the sphere.

Zeldovich sine flow
with wave number 2
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Mixing on a Sphere

• Constant rotation perpendicular to equatorial heating.

• 8 sector cellular flow.
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