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Sparse trajectories and material loops
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How do we efficiently detect trajectories that ‘bunch’ together?

Growth of curves also studied in LCS context by Haller &
Beron-Vera (2012).
[movie 1]
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Mathematical background: Punctured disks

Low-dimensional topologists have long studied transformations of
surfaces such as the punctured disk:

The central object of study is the homeomorphism: a continuous,
invertible transformation whose inverse is also continuous.

For instance, this is a model of a two-dimensional vat of viscous
fluid with stirring rods.
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Punctured disks in experiments
The transformation in this case is given by the solution of a fluid
equation over one period of rod motion.

[P. L. Boyland, H. Aref, and M. A. Stremler, J. Fluid Mech. 403, 277 (2000)]

[movie 2] [movie 3]
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Growth of curves on a disk
On a disk with 3 punctures (rods), we can also look at the growth
of curves:
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We use the braid generator notation: σi means the clockwise
interchange of the ith and (i + 1)th rod. (Inverses are
counterclockwise.)

The motion above is denoted σ1σ
−1
2 .
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Growth of curves on a disk (2)

The rate of growth h = log λ is called the topological entropy.

But how do we find the rate of growth of curves for motions on
the disk?

For 3 punctures it’s easy: the entropy for σ1σ
−1
2 is h = logϕ2,

where ϕ is the Golden Ratio!

For more punctures, use Moussafir iterative technique (2006).

[Thiffeault, Phys. Rev. Lett. (2005); Chaos (2010); Gouillart et al., Phys.

Rev. E (2006) ‘ghost rods’]
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Iterating a loop

It is well-known that the entropy can be obtained by applying the
motion of the punctures to a closed curve (loop) repeatedly, and
measuring the growth of the length of the loop (Bowen, 1978).

The problem is twofold:

1. Need to keep track of the loop, since its length is growing
exponentially;

2. Need a simple way of transforming the loop according to the
motion of the punctures.

However, simple closed curves are easy objects to manipulate in
2D. Since they cannot self-intersect, we can describe them
topologically with very few numbers.
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Solution to problem 1: Loop coordinates

What saves us is that a closed loop can be uniquely reconstructed
from the number of intersections with a set of curves. For instance,
the Dynnikov coordinates involve intersections with vertical lines:
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Solution to problem 2: Action on coordinates

Moving the punctures according to a braid generator changes some
crossing numbers:

�1
-1

There is an explicit formula for the change in the coordinates!

Easy to code up (see for example Thiffeault (2010)).
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Growth of L

For a specific rod motion, say as given by the braid
σ−1

3 σ−1
2 σ−1

3 σ2σ1, we can easily see the exponential growth of L
and thus measure the entropy:
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Growth of L (2)
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m is the number of times the braid acted on the initial loop.
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Oceanic float trajectories
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Oceanic floats: Data analysis

What can we measure?

• Single-particle dispersion (not a good use of all data)

• Correlation functions (what do they mean?)

• Lyapunov exponents (some luck needed!)

Another possibility:

Compute the σi for the float trajectories (convert to a sequence of
symbols), then look at how loops grow. Obtain a topological
entropy for the motion (similar to Lyapunov exponent).
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Oceanic floats: Entropy
10 floats from Davis’ Labrador sea data:
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   entropy = 0.0171

crossings = 126

Floats have an entanglement time of about 50 days — timescale
for horizontal stirring.

Source: WOCE subsurface float data assembly center (2004)
14 / 26

http://wfdac.whoi.edu/


Growth of loops Coding of loops LCS Conclusions References

Lagrangian Coherent Structures

• There is a lot more information in
the braid than just entropy;

• For instance: imagine there is an
isolated region in the flow that
does not interact with the rest,
bounded by Lagrangian coherent
structures (LCS);

• Identify LCS and invariant regions
from particle trajectory data by
searching for curves that grow
slowly or not at all.

• For now: regions are not ‘leaky.’

• (See the work of Haller et al.)
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Sample system: Modified Duffing oscillator
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ẋ = y + α cosωt,

ẏ = x(1 − x2) + γ cosωt − δy ,

+ rotation to further hide two regions. α = .1, γ = .14, δ = .08, ω = 1.
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Growth of a vast number of loops
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Left: semilog plot; Right: linear plot of slow-growing loops.

Clearly two types of loops!
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What do the slowest-growing loops look like?

(a)

(b)

(c)
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[(c) appears because the coordinates also encode ‘multiloops.’]
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Computational complexity

Here’s the bad news:

• There are an infinite number of loops to consider.

• But we don’t really expect hyper-convoluted initial loops (nor
do we care so much about those).

• Even if we limit ourselves to loops with Dynnikov coordinates
between −1 and 1, this is still 32n−4 loops.

• This is too many. . . can only treat about 10–11 trajectories
using this direct method.
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An improved method: Pair-loops

The biggest problem is that we only look at whether a loop grows
or not. But there is a lot more information to be found in how a
loop entangles the punctures as it evolves.

(1,2)

(a)

(1,3)

(4,2) (4,5)

{1, 2, 3, 4, 5}

(b)

{1, 3}

{2, 4, 5} {2, 4, 5}

Consider loops that enclose two punctures at once. More involved
analysis, but scales much better with n.
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Improvement

Run times in seconds:

# of trajectories 6 7 8 9 10 11 20
direct method 0.46 0.70 6.0 53 462 3445 N/A
pair-loop method 9.5 11.6 12.3 13 15 20 128

Bottleneck for the pair-loop method is finding the non-growing
loops. (Should scale as n2 for large enough n.)

The downside is that the pair-loop method is much more
complicated. But in the end it accomplishes the same thing.

See Allshouse & Thiffeault, Physica D 241, 95–105 (2012).
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A benchmark problem: double-gyre

Shadden et al. (2005)

ẋ = πA

( − sin(πf (x , t)) cos(πy)

cos(πf (x , t)) sin(πy) ∂f (x ,t)
∂x

)

f (x , t) = a(t)x2 + b(t)x

a(t) = ε sin(ωt)

b(t) = 1 − 2ε sin(ωt)

ε = 0.1, A = 0.1, ω = π/5.
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Double-gyre coherent structures
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[movie 4]
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Conclusions

• Having rods undergo ‘braiding’ motion guarantees a minimal
amount of entropy (stretching of material lines);

• This idea can also be used on fluid particles to estimate
entropy;

• Need a way to compute entropy fast: loop coordinates;

• There is a lot more information in this braid: extract it!
(coherent structures);

• However: Difficult to find an appropriate data set.

• We’re investigating the limits of the approach (how many
trajectories, how long).

• We’re developing Matlab tools — braidlab.

• Also applicable to granular media Puckett et al. (2012).

• See Thiffeault (2005, 2010) and Allshouse & Thiffeault
(2012).
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