Topological detection of coherent structures

[Jean-Luc Thiffeault](http://www.math.wisc.edu/~jeanluc)¹ [Michael Allshouse](http://web.mit.edu/endlab/people/index.html)²

¹[Department of Mathematics](http://www.math.wisc.edu) [University of Wisconsin – Madison](http://www.wisc.edu)

²[Department of Mechanical Engineering](http://meche.mit.edu/) [MIT](http://www.mit.edu)

SIAM Nonlinear Waves Meeting, Seattle, WA 13 June 2012

Sparse trajectories and material loops

How do we efficiently detect trajectories that 'bunch' together? Growth of curves also studied in LCS context by Haller & Beron-Vera (2012). [\[movie 1\]](http://www.math.wisc.edu/~jeanluc/movies/trm.wmv)

Mathematical background: Punctured disks

Low-dimensional topologists have long studied transformations of surfaces such as the punctured disk:

The central object of study is the homeomorphism: a continuous, invertible transformation whose inverse is also continuous.

For instance, this is a model of a two-dimensional vat of viscous fluid with stirring rods.

Punctured disks in experiments

The transformation in this case is given by the solution of a fluid equation over one period of rod motion.

[P. L. Boyland, H. Aref, and M. A. Stremler, J. Fluid Mech. 403, 277 (2000)] [\[movie 2\]](http://www.math.wisc.edu/~jeanluc/movies/boyland1.avi) [\[movie 3\]](http://www.math.wisc.edu/~jeanluc/movies/boyland2.avi)

Growth of curves on a disk

On a disk with 3 punctures (rods), we can also look at the growth of curves:

We use the braid generator notation: σ_i means the clockwise interchange of the *i*th and $(i + 1)$ th rod. (Inverses are counterclockwise.)

The motion above is denoted $\sigma_1 \sigma_2^{-1}$.

Growth of curves on a disk (2)

The rate of growth $h = \log \lambda$ is called the topological entropy.

But how do we find the rate of growth of curves for motions on the disk?

For 3 punctures it's easy: the entropy for $\sigma_1 \sigma_2^{-1}$ is $h = \log \varphi^2$, where φ is the Golden Ratio!

For more punctures, use Moussafir iterative technique (2006).

[Thiffeault, Phys. Rev. Lett. (2005); Chaos (2010); Gouillart et al., Phys. $Rev. E (2006) 'ghost rods']$

Iterating a loop

It is well-known that the entropy can be obtained by applying the motion of the punctures to a closed curve (loop) repeatedly, and measuring the growth of the length of the loop (Bowen, 1978).

The problem is twofold:

- 1. Need to keep track of the loop, since its length is growing exponentially;
- 2. Need a simple way of transforming the loop according to the motion of the punctures.

However, simple closed curves are easy objects to manipulate in 2D. Since they cannot self-intersect, we can describe them topologically with very few numbers.

Solution to problem 1: Loop coordinates

What saves us is that a closed loop can be uniquely reconstructed from the number of intersections with a set of curves. For instance, the Dynnikov coordinates involve intersections with vertical lines:

Solution to problem 2: Action on coordinates

Moving the punctures according to a braid generator changes some crossing numbers:

There is an explicit formula for the change in the coordinates! Easy to code up (see for example Thiffeault (2010)).

Growth of L

For a specific rod motion, say as given by the braid $\sigma_3^{-1} \sigma_2^{-1} \sigma_3^{-1} \sigma_2 \sigma_1$, we can easily see the exponential growth of L and thus measure the entropy:

[Growth of loops](#page-1-0) **[Coding of loops](#page-6-0) [LCS](#page-14-0)** [Conclusions](#page-23-0) [References](#page-25-0) Growth of L (2)

 m is the number of times the braid acted on the initial loop.

[Growth of loops](#page-1-0) **[Coding of loops](#page-6-0)** [LCS](#page-14-0) [Conclusions](#page-23-0) [References](#page-25-0)

000000 000000000 000000000 00

Oceanic float trajectories

Oceanic floats: Data analysis

What can we measure?

- Single-particle dispersion (not a good use of all data)
- Correlation functions (what do they mean?)
- Lyapunov exponents (some luck needed!)

Another possibility:

Compute the σ_i for the float trajectories (convert to a sequence of symbols), then look at how loops grow. Obtain a topological entropy for the motion (similar to Lyapunov exponent).

Oceanic floats: Entropy

10 floats from Davis' Labrador sea data:

Floats have an entanglement time of about 50 days — timescale for horizontal stirring.

Source: [WOCE subsurface float data assembly center \(2004\)](http://wfdac.whoi.edu/)

Lagrangian Coherent Structures

- There is a lot more information in the braid than just entropy;
- For instance: imagine there is an isolated region in the flow that does not interact with the rest, bounded by Lagrangian coherent structures (LCS);
- Identify LCS and invariant regions from particle trajectory data by searching for curves that grow slowly or not at all.
- For now: regions are not 'leaky.'
- • (See the work of Haller et al.)

Sample system: Modified Duffing oscillator

+ rotation to further hide two regions. $\alpha = .1$, $\gamma = .14$, $\delta = .08$, $\omega = 1$.

Growth of a vast number of loops

Left: semilog plot; Right: linear plot of slow-growing loops.

Clearly two types of loops!

What do the slowest-growing loops look like?

[(c) appears because the coordinates also encode 'multiloops.']

Computational complexity

Here's the bad news:

- There are an infinite number of loops to consider.
- But we don't really expect hyper-convoluted initial loops (nor do we care so much about those).
- Even if we limit ourselves to loops with Dynnikov coordinates between -1 and 1, this is still 3^{2n-4} loops.
- This is too many. . . can only treat about 10–11 trajectories using this direct method.

An improved method: Pair-loops

The biggest problem is that we only look at whether a loop grows or not. But there is a lot more information to be found in how a loop entangles the punctures as it evolves.

Consider loops that enclose two punctures at once. More involved analysis, but scales much better with n.

Run times in seconds:

Bottleneck for the pair-loop method is finding the non-growing loops. (Should scale as n^2 for large enough n.)

The downside is that the pair-loop method is much more complicated. But in the end it accomplishes the same thing.

See Allshouse & Thiffeault, *Physica D* 241, 95–105 (2012).

A benchmark problem: double-gyre

Shadden et al. (2005)

$$
\dot{\mathbf{x}} = \pi A \begin{pmatrix} -\sin(\pi f(x, t)) \cos(\pi y) \\ \cos(\pi f(x, t)) \sin(\pi y) \frac{\partial f(x, t)}{\partial x} \end{pmatrix}
$$

$$
f(x, t) = a(t)x^{2} + b(t)x
$$

\n
$$
a(t) = \varepsilon \sin(\omega t)
$$

\n
$$
b(t) = 1 - 2\varepsilon \sin(\omega t)
$$

$$
\varepsilon=0.1, A=0.1, \omega=\pi/5.
$$

[Growth of loops](#page-1-0) [Coding of loops](#page-6-0) **[LCS](#page-14-0)** [Conclusions](#page-23-0) [References](#page-25-0)

000000 000000000 000000000 00000000 00

Double-gyre coherent structures

[\[movie 4\]](http://www.math.wisc.edu/~jeanluc/movies/dgPoincare4.mov)

Conclusions

- Having rods undergo 'braiding' motion guarantees a minimal amount of entropy (stretching of material lines);
- This idea can also be used on fluid particles to estimate entropy;
- Need a way to compute entropy fast: loop coordinates;
- There is a lot more information in this braid: extract it! (coherent structures);
- However: Difficult to find an appropriate data set.
- We're investigating the limits of the approach (how many trajectories, how long).
- We're developing Matlab tools braidlab.
- Also applicable to granular media Puckett et al. (2012).
- See Thiffeault (2005, 2010) and Allshouse & Thiffeault (2012).

This work was supported by the Division of Mathematical Sciences of the US National Science Foundation, under grant DMS-0806821.

References

- Allshouse, M. R. & Thiffeault, J.-L. 2012 Detecting Coherent Structures Using Braids. Physica D 241, 95–105.
- Bestvina, M. & Handel, M. 1995 Train-Tracks for Surface Homeomorphisms. Topology 34, 109–140.
- Binder, B. J. & Cox, S. M. 2008 A Mixer Design for the Pigtail Braid. Fluid Dyn. Res. 49, 34–44.
- Bowen, R. 1978 Entropy and the fundamental group. In Structure of Attractors, volume 668 of Lecture Notes in Math., pp. 21–29. New York: Springer.
- Boyland, P. L. 1994 Topological methods in surface dynamics. Topology Appl. 58, 223–298.
- Boyland, P. L., Aref, H. & Stremler, M. A. 2000 Topological fluid mechanics of stirring. J. Fluid Mech. 403, 277–304.
- Boyland, P. L., Stremler, M. A. & Aref, H. 2003 Topological fluid mechanics of point vortex motions. Physica D 175, 69–95.
- Dynnikov, I. A. 2002 On a Yang–Baxter map and the Dehornoy ordering. Russian Math. Surveys 57, 592–594.
- Finn, M. D. & Thiffeault, J.-L. 2011 Topological optimisation of rod-stirring devices. SIAM Rev. 53, 723-743.
- Gouillart, E., Finn, M. D. & Thiffeault, J.-L. 2006 Topological Mixing with Ghost Rods. Phys. Rev. E 73, 036311.
- Hall, T. & Yurttas, S. Ö. 2009 On the Topological Entropy of Families of Braids. Topology Appl. 156, 1554–1564.
- Haller, G. & Beron-Vera, F. J.. 2012 Geodesic theory of transport barriers in two-dimensional flows. Physica D, submitted
- Kolev, B. 1989 Entropie topologique et représentation de Burau. C. R. Acad. Sci. Sér. I 309, 835–838. English translation at [arXiv:math.DS/0304105.](http://arxiv.org/abs/math.DS/0304105)
- Moussafir, J.-O. 2006 On the Entropy of Braids. Func. Anal. and Other Math. 1, 43–54. [arXiv:math.DS/0603355.](http://arXiv.org/math.DS/abs/0603355)
- Puckett, J. G., Lechenault, F., Daniels, K. E. & Thiffeault, J.-L. 2012 Trajectory entanglement in dense granular materials. [arXiv:1202.5243.](http://arXiv.org/abs/1202.5243)
- Thiffeault, J.-L. 2005 Measuring Topological Chaos. Phys. Rev. Lett. 94, 084502.
- Thiffeault, J.-L. 2010 Braids of entangled particle trajectories. Chaos, 20, 017516.
- Thiffeault, J.-L. & Finn, M. D. 2006 Topology, Braids, and Mixing in Fluids. Phil. Trans. R. Soc. Lond. A 364. 3251–3266.
- Thurston, W. P. 1988 On the geometry and dynamics of diffeomorphisms of surfaces. Bull. Am. Math. Soc. 19, 417–431.