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Takens–Bogdanov

TB bifurcation occurs when two modes go unstable
at the same parameter values.

Equations for the reduced dynamics near this
bifurcation point capture more of the diverse behaviour
of the system than simple steady or Hopf bifurcation.

For thermohaline convection in long-wave theory such
a bifurcation is present.

Unfortunately, one problematic feature of the
Takens–Bogdanov bifurcation is that the correct
reduced equations contain terms of differing order in
the standard asymptotic expansion parameter (Coullet
1983). The trouble is that the asymptotic theory fails
to collect a dissipative nonlinear term; the amplitude
equations is conservative to leading order (Childress
and Spiegel, 1981).
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Possible solutions

• Normal form theory: not available for extended
systems.

• Reconstitution: difficult to judge validity. Clearly
flawed in some cases (Clune, Depassier, and
Knobloch, 1994).

• Alternative route: if more parameters were
available, could tune out resonant terms
(augmenting the codimension of the bifurcation).

To introduce needed extra parameters, we choose
anisotropic double-diffusion as our system. (ocean,
astrophysics, tokamak plasmas)
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Model Equations

The equations for anisotropic double-diffusion are

σ−1 d

dt
∇2ψ = RT ∂xΘ −RS ∂xΣ + (D2 + γψ ∂

2
x)∇

2ψ,

d

dt
Θ = ∂xψ + (D2 + γΘ ∂

2
x)Θ,

Le
d

dt
Σ = Le ∂xψ + (D2 + γΣ ∂

2
x)Σ;

with stress-free, fixed-flux boundary conditions

ψ = ∇2ψ = 0, DΘ = DΣ = 0, z = 0 and 1

Fixed flux favours convection cells that are as large
as the system will permit. Use this to define small
parameter ε.

Scaling:

∂x = ε ∂X, ∂t = ε4 ∂T , ψ = ε φX
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Order ε0

D4φ0X = −RT 0 Θ0X +RS0 Σ0X

D2Θ0 = 0

D2Σ0 = 0

The fixed flux boundary conditions give Θ0 = const.,
Σ0 = const. in z. Applying stress-free boundary
conditions on φ, we have

φ0X =
1

24
z(z−1)(z2−z−1) (RS0 Σ0X −RT 0 Θ0X) .
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Order ε2

D4φ2X = −RT 0 Θ2X +RS0 Σ2X −RT 2 Θ0X +RS2 Σ0X

− (1 + γψ0)D
2φ0XXX

+ σ−1
(

φ0XXD
3φ0X −Dφ0XD

2φ0XX

)

D2Θ2 = −γΘ0Θ0XX − φ0XX −Dφ0XΘ0X

D2Σ2 = −γΣ0Σ0XX − Le0 φ0XX − Le0Dφ0XΣ0X

Solvability condition (linear at this order):

(

a0 − γΘ0 −b0
Le0 a0 −Le0 b0 − γΣ0

) (

Θ0XX

Σ0XX

)

= 0.

where a0 = RT 0/120, b0 = RS0/120.

(120 −→ 720 for no-slip)
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Codimension two point

The requirement that the matrix M have zero
eigenvalues means that its trace and determinant must
vanish.

This is obtained by letting

RT 0 = 120
γΘ

2
0

γΘ0 − γΣ0

, RS0 =
120

Le0

γΣ
2
0

γΘ0 − γΣ0

,

so that we now have

M =

(

γΘ0 γΣ0 −Le−1
0 γΣ

2
0

Le0 γΘ
2
0 −γΘ0 γΣ0

)

.

The eigenvector for the matrix M is parametrized
by Σ0 = γΘ0 Le0 Θ0/γΣ0 (it only has one).

SIAM DS-97 6



Order ε4

Expressions getting ugly fast. . . Get two solvability
conditions again,

Θ0T = · · ·

Σ0T = γΘ0 Le0 Θ0/γΣ0 = · · ·

Must be compatible since Θ0 and Σ0T are related.
This is not satisfied automatically; this is why we now
make use of the extra parameters. By letting

Le0 = 1

31(γΘ0 + γΣ0) = 561(1 + γψ0)

RT 2 −
γΘ0

γΣ0

RS2 =
120γΘ0(γΘ2 − γΣ2 + Le2 γΣ0)

γΘ0 − γΣ0

the two become compatible. This increases the
codimension by three.
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We can now write

fT = ᾱ gXX + µ̄ fXX + ν̄ fXXXX + p̄
(

f3
X

)

X

with

f(X,T ) := Θ0(X,T )

g(X,T ) := Σ2,0(X,T ) −
γΘ0

γΣ0

Le0 Θ2,0(X,T )

ᾱ :=
γΣ

2
0

γΘ0 − γΣ0

µ̄ :=
γΘ0 γΣ2 − γΘ2 γΣ0 − Le2 γΘ0 γΣ0

γΘ0 − γΣ0

ν̄ :=
γΘ0 γΣ0

56

p̄ :=
155

126
γΘ

2
0
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Order ε6

We get a solvability condition involving only gT at this
order. After rescaling to eliminate some parameters we
have the coupled system

fT = gXX + µ fXX + fXXXX +
(

f3
X

)

X

gT = λ fXX + κ fXXXX − γ fXXXXXX + β gXX
− ρ gXXXX + ξ

(

f3
X

)

X
+

(

f2
X gX

)

X

+ η
(

fX f
2
XX

)

X
− ζ

(

f3
X

)

XXX

We fixed Le0, γψ0, and γΘ2. However, we are left
with enough parameters to vary independently all the
coefficients except η and ζ.
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In detail. . .

µ =
7

15

120 γΘ0 (γΣ2 − Le2 γΣ0) − RT 2 γΣ0 + RS2 γΘ0

γΣ0 γΘ0
2

λ =
392

15

1

γΘ
2
0 γΣ

2
0(γΘ0 − γΣ0)

(

(RT 4 γΣ0 − RS4 γΘ0)(γΘ0 − γΣ0)

+ 120γΘ0 γΣ0(γΣ4 − γΘ4 − γΣ0 Le4 + γΣ0 Le
2
2 − γΣ2 Le2)

)

κ =
7

1485

1

σγΘ
2
0 γΣ

2
0

(

67320γΘ0 γΣ0(σ γψ2 − γΣ2 + γΣ0 Le2)

+ 561γΣ0(RT 2 γΣ0 − RS2 γΘ0) + 11880σ γΘ0 γΣ0 γΣ2

− 31σ γΘ0 γΣ0RT 2 − σ γΘ0RS2(99γΘ0 − 130γΣ0)

)

+

(

130

99
γΘ

−1
0 − 1

)

ξ

γ = ρ+
1

552335355 γΘ0 γΣ0

(

241025959 (γΘ0
2
+ γΣ0

2
)

+ 981200220 (γΘ0 + γΣ0) + 238887029 γΣ0 γΘ0 − 17756558820

)

β =
7

15

120 γΣ0 (γΣ2 − Le2 γΣ0) − RS2 (γΘ0 − γΣ0)

γΣ0
2 γΘ0

ρ =
17

3σ

ξ = 56
Le2

γΘ0 − γΣ0
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η =
1

66495

569621σ2 + 89877σ + 4565

σ2

ζ =
2

199485

360069σ2 + 516149σ − 2385

σ2
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Small-amplitude Normal Form

Near criticality, if the system is in a box so that
only discrete modes are excited, we use a single spatial
mode, i.e. f, g ∼ exp(iKX). Then we can use
normal form theory. After a nonlinear transformation
the system can be written as the (unfolded) normal
form

u̇ = w

ẇ = µ1u+ µ2w +
[

A |u|2 − (u∗w + uw∗)
]

u− |u|2w,

with

µ1 := −K4
(

(µβ − λ) + (µρ− β + κ)K2 + (γ − ρ)K4
)

µ2 := K2
(

µ+ β + (ρ− 1)K2
)

,

A :=
3

4
K2

(

(µ+ β + ξ) − (
1

3
η − ζ − ρ+ 1)K2

)

.

A can have either sign, so criticality can change.
Systems of this type are classified in Dangelmayr and
Knobloch, 1987.
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Slaving and Limits

We can slave g to f by assuming that its decay rate
is large. The variable g will then quickly reach its
equilibrium value (ġ = 0). There are two such limits
we wish to consider: β � 1 and ρ� 1.

Large β

fT =

(

µ−
λ

β

)

fXX +

(

1 −
κ

β

)

fXXXX +
γ

β
fXXXXXX

+

(

1 −
ξ

β

)

(

f3
X

)

X
−
η

β

(

fX f
2
XX

)

X
+
ζ

β

(

f3
X

)

XXX

In the limit γ = η = ζ = 0 (or β → ∞) this
equation reduces to the one derived by Chapman and
Proctor (1980) for Rayleigh–Bénard convection with
Boussinesq symmetry.
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Consider the functional

V[f ] =

〈

1

2

(

µ−
λ

β

)

f2
X −

1

2

(

1 −
κ

β

)

f2
XX +

1

2

γ

β
f2
XXX

+
1

4

(

1 −
ξ

β

)

f4
X −

1

2

η

β
f2
Xf

2
XX

〉

,

where 〈 〉 denotes an integration over the domain of f .
For appropriate boundary conditions on f this system
is variational

fT = −
δV

δf

only if ζ = 1
3η. Otherwise the equation is not

variational.

For appropriate signs of the coefficients V is bounded
from below and so is a Lyapunov functional. Hence all
solutions tend to steady states for long times.

SIAM DS-97 14



Large ρ

Letting F := fX, we then have

FT =
λ

ρ
F +

(

µ+
κ

ρ

)

FXX +

(

1 −
γ

ρ

)

FXXXX

+
ξ

ρ
F 3 +

η

ρ
FF 2

X +

(

1 −
ζ

ρ

)

(

F 3
)

XX
.

In the limit where γ = ρ, η = 0, ζ = ρ we recover a
real Ginzburg–Landau equation. The functional

V[f ] =

〈

−
1

2

λ

ρ
F 2 +

1

2

(

µ+
κ

ρ

)

F 2
X −

1

2

(

1 −
γ

ρ

)

F 2
XX

−
1

4

ξ

ρ
F 4 −

1

2

η

ρ
F 2F 2

X

〉

will generate FT if ζ − ρ = 1
3η. It is not variational

otherwise.
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Hamiltonian Limit

If we go back to the unscaled equations there are
values of the parameters for which the system is
Hamiltonian with

H[f, g]=
1

2

〈

−ᾱ g2
X + λ̄ f2

X − κ̄ f2
XX − γ̄ f2

XXX − 2µ̄ fX gX

+2ν̄ fXX gXX − p̄
(

f3
X

)

gX +
1

2
ξ̄ f4

X − η̄ f2
X f

2
XX

〉

In particular, when µ̄ = ν̄ = p̄ = η̄ = 0, we have

ᾱ−1fTT = λ̄ fXXXX + κ̄ fXXXXXX
− γ̄ fXXXXXXXX + ξ̄

(

f3
X

)

XXX
.

For γ = 0 this is the same equation that was derived
by Childress and Spiegel 1981.
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Steady Solutions

If we let F = fX and G = gX, their time evolution
is given by

FT = GXX + µFXX + FXXXX +
(

F 3
)

XX

GT = λFXX + κFXXXX − γ FXXXXXX + β GXX
− ρGXXXX + ξ

(

F 3
)

XX
+

(

F 2G
)

XX

+ η
(

F F 2
X

)

XX
− ζ

(

F 3
)

XXXX
.

For steady solutions we have just one equation

0 = (λ− µβ)F + (κ− β + µρ)FXX − (γ − ρ)FXXXX

− (µ+ β − ξ)F 3 +

(

ρ− ζ −
1

3

)

(

F 3
)

XX

+ (η + 2)FF 2
X − F 5
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Conclusions

• For anisotropic double-diffusion in long-wave
theory, we have shown that an extended system
equation can be asymptotically derived.

• The equation contains several known equations as
limits.

• We’ve begun exploring steady nonlinear solutions.
Their stability still remains to be determined.

• Make connection with physics.
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