
Active Particles in Confined Environments

Jean-Luc Thiffeault

Department of Mathematics
University of Wisconsin – Madison

joint with: Alexandra Tzella, Daniel Loghin (Birmingham)

Hongfei Chen (Tulane)

Sanchita Chakraborti (Wisconsin)

SIAM Conference on Applications of Dynamical Systems
Portland, OR, 17 May 2023

1 / 23

http://www.math.wisc.edu/~jeanluc
http://www.math.wisc.edu
http://www.wisc.edu
http://www.wisc.edu


Active and passive particles in complex environments

Lots of interest, old and new, in passive and active particles scattering in
periodic or random environments.

. . .
Brenner (1980)
Kamal & Keaveny (2018)
Alonso-Matilla et al. (2019)
Aceves-Sanchez et al. (2020)
Chakrabarti et al. (2020) =⇒
Amchin et al. (2022)
. . .

Many variations: different lattices, passive vs active, background flow,
flexible vs rigid. . .
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Passive disk in a lattice of point obstacles (r = 0.1)

A small disk doesn’t feel the lattice much.
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Passive disk (r = 0.2)

As the disk gets larger it is frustrated by the lattice.
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Passive disk (r = 0.45)

play movie
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http://www.math.wisc.edu/~jeanluc/movies/disk.mp4


Passive ellipse (a = 1, b = 0.25)

For an ellipse the orientation angle is also Brownian.
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A particle in a lattice of obstacles

2D periodic lattice of point obstacles, with rod-shaped particle as example.

Neglect hydrodynamic interactions.
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Brownian dynamics

Particle undergoes Brownian motion in space and angle:

dX = U dt +
√

2DX dW1

dY =
√

2DY dW2

dθ =
√

2Dr dW3

Diffusion tensor in body frame (X,Y, θ):DX 0 0
0 DY 0
0 0 Dr


(X,Y ) in body frame, (x, y) in lab frame.
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Brownian dynamics: Diffusion tensor

Expressed in the fixed lab (x, y) frame, the spatial diffusion tensor is

D(θ) =

(
DX cos2 θ +DY sin2 θ 1

2(DX −DY ) sin 2θ
1
2(DX −DY ) sin 2θ DX sin2 θ +DY cos2 θ

)
.
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Brownian dynamics: Fokker–Planck equation

Fokker–Planck equation for probability density p(r, θ, t):

∂tp+∇r · f + ∂θfθ = 0

Probability flux vector:

f = Up− D(θ) · ∇rp−Dr θ̂ ∂θp

Key point: account for obstacles with no-flux boundary condition

f · n̂ = 0

on the surface of the obstacle, in the full 3D configuration space (x, y, θ).

[See Chen & Thiffeault (2021) for a similar approach in a channel.]
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Configuration space: Fixed orientation

Configuration space gives allowable (x, y) for fixed θ.

A point in this periodic cell is a realizable configuration of the rod.
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Effective diffusivity: Rayleigh’s problem

We’ve mapped the problem exactly onto heat conduction in a perforated
medium.

For a disk-shaped passive particle (no
drift, U = 0), Rayleigh solved this by
a reflection method.

[“On the influence of obstacles arranged in rectangular order upon the properties of a

medium,” Rayleigh, L. (1892). The London, Edinburgh, and Dublin Philosophical

Magazine and Journal of Science, 34 (211), 481–502]
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Configuration space: Rotational diffusion

Now allowing θ ∈ [0, 2π] to vary, get 3D configuration space:

No-flux boundary condition at
surface of ‘obstacle,’ so again we
have a heat conduction problem, in a
domain with obstacles in the shape
of twisted ribbons.

As you might imagine, interesting
things can happen when the ‘ribbon’
overflows the cell (long particle), but
I won’t talk about that today.
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Homogenization approach

Rayleigh’s approach is not very well suited to drift (swimmers) or to
non-circular particles.

Homogenization theory allows us to find effective diffusivity by introducing
a long time T and large scale R to get an effective heat equation:

∂TΦ = ∇R · (Deff · ∇RΦ)

where the effective diffusivity tensor is

Deff =
1

|Ω \ω|

(
⟨D⟩+

∫
∂ω

n̂ · DχdA

)
.

Notation: ⟨·⟩ = integration over cell Ω, |·| = volume. The integral is over
the 2D surface of the 3D perforation ω in (x, y, θ).

What is χ?
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The cell problem

In the absence of drift, the cell problem for χ is

D : ∇r∇rχ = 0, r ∈ Ω \ω;
n̂ · D · ∇rχ = −n̂ · D, r ∈ ∂ω.
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Active disk (r = 0.2)

A “free” active particle has added diffusivity U2/2Dr.
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Active disk (r = 0.45)

An active disk progresses through the lattice much faster.
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Invariant density for active disk

Concentration at the surface of the ‘obstacle’ shows barber pole pattern.

PDE solution by A. Tzella and D. Loghin. [Sorry, ϕ is θ here.] 18 / 23



Effective diffusivity for active disk
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Effective diffusivity for active disk (large Pe)

Effective diff. normalized by free value.
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Discontinuous at r = π? Disk can always ‘squeeze through.’
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Discussion

• Configuration space viewpoint: think of a point in a funny domain
rather than a shape in a lattice.

• Study with either stochastic particle simulations or Fokker–Planck
equation.

• Homogenization theory is one approach in getting an effective
diffusivity.

• Examples such as the ellipse in a lattice show that a lot is lost when
considering only effective diffusivity.
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Configuration space for a square particle

With Sanchita Chakraborti, we
are looking at a tight-fitting
square in a lattice. Can exploit
‘small gaps’ as in Keller (1963).
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