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Overview

Kinematic transport processes are described by equations such as
the advection-diffusion equation
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where the Eulerian velocity field v(a,t) is some prescribed
time-dependent flow. The quantity ¢ represents the concentration

of some passive scalar, and D is the diffusion coefficient.

When the Lagrangian trajectories are chaotic, the diffusion is
enhanced greatly due to the exponential stretching of fluid

elements. This is known as chaotic mixing.
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Lagrangian Coordinates

The trajectory of a fluid element in Eulerian coordinates @ satisfies

dax
E(

where £ are Lagrangian coordinates that label fluid elements. The

§,t) = v(z(£,1),1),

usual choice is to take as initial condition x(&,t = 0) = &, which

says that fluid elements are labeled by their initial position.

x = x(&,1) is thus the transformation from Lagrangian (§) to

Eulerian (a) coordinates.

For a chaotic flow, this transformation gets horrendously
complicated as time evolves.
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Lyapunov Exponents

The rate of exponential separation of neighbouring Lagrangian

trajectories is measured by Lyapunov exponents

1
Moo = tlim " In||(Tev)hgl|,

where T, v is the tangent map of the velocity field (the matrix
Ov/0x) and 1y is some constant vector.

Lyapunov exponents converge very slowly. So, for practical
purposes we are always dealing with finite-time Lyapunov

exponents.
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The Idea

The coordinate transformation x(&,t) is best studied using the

tools of differential geometry.

For instance: the Riemann curvature tensor is a quantity which
is invariant under coordinate transformations. In “normal”
space, the Riemann tensor vanishes. Therefore, it must also

vanish in Lagrangian coordinates.

Enforcing the vanishing of the Riemann tensor allows us to
derive constraints on the spatial dependence of finite-time
Lyapunov exponents and their associated characteristic

directions.

Can be tied to the local efficiency of mixing in a flow.
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The metric tensor in Lagrangian coordinates is defined by

Ozt Oz

(gi; is the flat metric §;; transformed to Lagrangian coordinates.)

g is a symmetric positive-definite matrix that tells us the distance

between two infinitesimally separated points in Lagrangian space
ds* = dx - dx = g;; d&'d€7 .

The eigenvalues A, (&,t) of g are thus related to the finite-time

Lyapunov exponents by

Mu(§51) =InA(€,1) /21

/ The Metric Tensor \
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Stable and Unstable Directions

At a fixed coordinate &, there are directions & and § associated

with the largest and smallest Lyapunov exponent, respectively:
e

e
yd yd
The characteristic directions é(&,t) and §(&,t) converge

exponentially to their asymptotic values €,,(&) and §..(§), whereas

Lyapunov exponents A, (&,t) converge logarithmically to A7°.
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Model System

Oscillating convection rolls: v = (—3d,v, 0,%), with

V(x,t) = Ak~ (sin kx sin Ty + € cos wt cos kx cos my)
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typical portions of the stable manifold in red and blue.

field for oscillating rolls with A = k =€ = w = 1, with two

A
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The Advection-diffusion Equation

Under the coordinate change to Lagrangian variables the diffusion
term becomes

0 .0 0 O
7. (0ve) - 2 (022 = 2 (pgs22)

In Lagrangian coordinates the diffusivity becomes Dg%: it is no

longer isotropic.

The advection-diffusion equation is thus just the diffusion equation,

06 9 [ . 00
o " oe (Dg]a_fj)’

because by construction the advection term drops out.
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The metric g;; can be written in diagonal form as

Diffusion along S, and é.

gij = Aeeiej +Ammimj —|—AS SiSj
where A, = exp(2),t). The inverse ¢g*/ is
g?=Atee+ A trmm+ A8
The diffusion coefficients along the § and é directions are

D*®* = 5;(Dg")s; = Dexp(—2Ast),
D¢ = e;(Dg")e; = Dexp(—2\.t).

For a chaotic flow, D¢ goes to zero exponentially quickly, while
D?® grows exponentially.

\Hence, essentially all the diffusion occurs along the §-line.

/
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Riemannian Curvature

then its Riemann curvature tensor

m — m m m S m S
R%e =15 — Ui+ s L5 — s L
must vanish in every coordinate system.

The Christoffel symbols I' contain derivatives of the metric,
ok = 59" (9ej.k + Geng — Gjnoe)

In three dimensions, the Riemann tensor has six independent
components, equivalent to the Ricci tensor R, = R7 .

In two dimensions, the Riemann tensor has one independent
component, equivalent the Ricci scalar R = ¢** R;p.

Differential geometry tells us that if a metric describes a flat space,

\
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Two-dimensional Case

In two dimensions, the Ricci scalar written in terms of the

characteristic directions w(*) = (&,8) is

R = i L Vo - (A;1/2 W) Vo - (\/EA;UQ W(M)))

The 0 subscript on V denotes derivatives with respect to the
Lagrangian coordinates, &.

N

Notice that the Lyapunov exponent enter as A,Il/ 2 = exp(—A, ).
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As a simple demonstration, let us take the flow

A Nonchaotic Example

v(x1,22) = (0, f(z1)). The Lagrangian trajectories are

r1 =&

To =&+t f(&1)

The metric tensor is then

oz’ oz* 1L+t f(&)* tf'(&)

MU T ey

The eigenvalues and eigenvectors of g are then easily derived.
Direct insertion into the formula for the 2D curvature confirms,

N

after a tedious calculation, that it does indeed vanish identically.
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/ The Chaotic Case \

Assume the Lagrangian trajectories are chaotic (which in 2D

requires a time-dependent v). The Ricci scalar is the sum of two

terms:

L Vo - <e_>‘etévo : ( g1 e_’\eté>) ~ exp(—2|A| )

Vgl

L Vo - (e_kstévo : ( g1 e_Asté)) ~ exp(+2|As| t)

Vgl

These terms cannot balance each other unless

1 ~ ~
Y, (e—/\s 5§V, - ( gl e s)) ~ exp(—2|A%[ 1) — 0

Vol
where A\, (&,t) = (\;(€,1) — A) ¢

The form assumed for the diagonalized metric is not quite
arbitrary: the characteristic directions and exponents are related to

each other.
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Now let
K

1 —Xs g
\/ﬁvo-<\/Ee )

Then the constraint can be written
5§ VK=-—=-K"

(e dr

K will decrease without bound on an S-line with a value dependent

dK

>

on the choice of parameter 7, unless K = 0. Hence:

1 ~
— Vo - (\/ gl e é) — 0

9]

or

—vo-( \g\é)—é-vo)\st—>0

Vgl
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Convergence on the s, -line

—Vo - 80
(8o - Vo)A L.

Red:

Vo 800 — (800 - Vo) As t evaluated on an S..-line.
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T is the distance along the red S..-line on page 9.
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In a coordinate system aligned with the characteristic directions

The Three-dimensional Case

W) = (&,1m,8), a typical diagonal element of the Ricci tensor is

o %@ Vo [V (A (e - H<m8>>)}

1 / se me

1
2|9

where the characteristic helicities are defined as

H () = A(_z/l)/2 W) Vo X (A%Z)Z W(V))

and |g| = det g.

N

\

F2A0) HO RO g [(A(m)H(mm)—A(s)H(ss)) A(Q)H@@Z]

/
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tensor, we find that
HEm) and H(™e) 0
This is equivalent to

€e-Voxm-—5§-VA,t—0

m-Vgxé+8S- VAt —0

Taking the difference of these two constraints yields

—— Vo (VIgl§) = 8- VoAt — 0,

Vgl

the same constraint as in two dimensions. This was observed

numerically for incompressible flows in 3D by Tang and Boozer

K(1999). The two constraints involving the helicities are new.

Gwe seek to balance the terms that grow exponentially in the Ricci\

/
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ABC Flow

To exhibit the convergence of these quantities, we use the ABC

flow,

v(x) = A(0,sinxq,cosx1)+ B (cosxa,0,sinxs)+ C (sin s, cosxs, 0)
a sum of three Beltrami waves that satisfy V x v @ v. It is
time-independent and incompressible (|g| = 1).

This flow is well-studied in the context of dynamo theory. We shall
be using the habitual parameter valuesof A=B=C =1 in

subsequent examples.

N /
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ABC Flow, A= B=C = 1
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ABC Flow, A=B=C
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More Constraints. ..

The story is not quite complete: the “balance of curvature” also

requires that

Ae H(ee) N Am H(mm)

or

Ae(é-VQXé)NAm(ﬁI-VQXﬁI)

This constraint is slightly different in nature than the previous

ones, since it involves no A\ derivatives.

N
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ABC Flow, A= B=C = 1

-151L
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ABC Flow, A= B=C = 1
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Curvature and Lyapunov Exponents

20

15

Finite-time Lyapunov exponent A\¢(£(7),t) has local minima near
Khigh—curvature k = (8- V()8 regions of §-line.

/
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Conclusions

Diffusion occurs overwhelmingly along the stable direction.

Relationships between characteristic directions and exponents.

These work best in highly chaotic flows.

Sharp bends in the 8 line lead to locally small finite-time

Lyapunov exponents (diffusion is hindered).

Verified constraints directly on oscillating-rolls flow in 2D and
ABC flow in 3D.

Seek applications to characterize mixing properties in 2D and
3D fluids, and to the dynamo problem in plasmas.

/

27



