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Overview

• We attempt to provide a unified description of variational

methods for establishing stability of plasma equilibria.

• The first approach discussed, which for plasmas was introduced

by Bernstein et al. [1], is based upon a Lagrangian approach (in

the sense of fluid elements). A Lagrangian equilibrium is static.

• If there is a symmetry in the system, one can use the process of

reduction to derive a smaller set of equations from the

Lagrangian description. Equilibria for the smaller system can

have flow (steady, but not static).

• The most important such symmetry is the relabeling

symmetry, which leads to an Eulerian description, where

knowledge of the position of fluid elements disappears.
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Equations of Motion

We consider the equations of motion for an inviscid, ideally

conducting fluid:

ρ (∂tv + v · ∇v) = −∇p + J×B

∂tρ +∇ · (ρv) = 0

∂ts + v · ∇s = 0

∂tB = ∇× (v ×B) .

v is the fluid velocity, p the pressure, ρ the density, s the entropy,

B the magnetic field, and J = ∇×B the electric current. The

dynamical equations are supplemented by the constraint ∇ ·B = 0.
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Constants of Motion

The Hamiltonian (total energy) for the system is conserved:

H =

∫

d3x
(

1

2
ρ |v|2 + 1

2
|B|2 + ρ U(ρ, s)

)

U is the internal energy, with p = ρ2(∂U/∂ρ)s.

The system possesses other invariants, such as the helicity and

cross-helicity, depending on the initial configuration [15, 19].
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Lagrangian (static) Equilibrium

Equilibrium quantities are denoted by a subscript e.

Setting ∂t and ve to zero, the only condition is

∇pe = (∇×Be)×Be

along with ∇ ·Be = 0.

To determine a sufficient condition for stability, we consider

perturbations about a static equilibrium

x = x0 + ξ(x0, t),

where x is the position of a fluid element at time t and ξ(x0, t) is

the Lagrangian displacement, with ξ(x0, 0) = 0.
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After computing the variations of the various physical quantities

and linearizing the equations of motion with respect to ξ

(Bernstein et al. [1]), we obtain

ρ0 ξ̈ = F(ξ),

where

F(ξ) := ∇0

[

ρ0







∂p0

∂ρ0







s0

∇0 · ξ + (ξ · ∇0) p0

]

+J0×Q−B0×(∇0×Q)

and

Q := ∇0 × (ξ ×B0)

Linear stability is then guaranteed if

δ2W (ξ, ξ) := − 1

2

∫

ξ · F(ξ) d3x ≥ 0.

This is Lagrange’s principle: the potential energy needs to be

positive-definite for stability.
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Equilibria with Symmetry

If the equations possess a symmetry, we may use the process of

reduction (see e.g. Morrison [16]) to decrease the order of the

system.

Newcomb [4] finds axially symmetric equilibria, with flow in the

toroidal direction. We can move to a reference frame where the

equilibrium appears static, even though it has flow along the

symmetry direction.
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Eulerian Equilibria

An important reduction is the relabeling symmetry, by which we

pass from the Lagrangian to the Eulerian picture [16]. The

equilibria then represent steady flows. We want to use different

methods than before, because we would rather not have to find

explicitly the trajectory of fluid elements.

Two approaches:

• “Eulerianized” Lagrangian displacements (Frieman and

Rotenberg [3], Newcomb [4]), by which the displacements are

re-expressed in terms of Eulerian variables only.

• Dynamically accessible variations [16], a method for generating

variations which preserve the Casimir invariants of the system

(a generalization of “Arnold’s method” [6]).
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“Eulerianized” Lagrangian Displacement

The idea here is to express the Lagrangian displacement ξ(x0, t) in

terms of the Eulerian coordinates x:

η(x, t) = ξ(x0, t)

The variations are [4]

δv = η̇ + v · ∇η − η · ∇v

δρ = −∇ · (ρ η)

δs = −η · ∇s

δB = ∇× (η ×B).

Then the energy can be varied with respect to these perturbations,

and a sufficient stability criterion is obtained. Note that since the

variations are arbitrary, η and η̇ are independent.
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Hamiltonian Formulation

The inviscid, ideally conducting fluid has a Hamiltonian

formulation in terms of a noncanonical bracket

{F , G} = −









∫

d3x Fρ∇ · Gv + Fv ·

(

(∇× v)

2ρ
×Gv

)

+ ρ−1∇s · (Fs Gv) + ρ−1Fv · (B× (∇×GB))








+








F ←→ G








.

F and G are functionals of the dynamical variables (v, ρ, s,B), and

subscripts denote functional derivatives. The bracket { , } is

antisymmetric and satisfies the Jacobi identity. The equations of

motion of page 3 can be written

∂t(v, ρ, s,B) = {(v, ρ, s,B) ,H }

in terms of the Hamiltonian (page 4).
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Dynamical Accessibility

Another method establishing formal stability uses dynamically

accessible variations (DAV), defined for the variable ζ as

δζda := {G , ζ} , δ2ζda := 1

2
{G , {G , ζ}} ,

with G given in terms of the generating functions χµ by

G :=

∫

ζµ χµ d3x.

DAV are variations that are constrained to remain on the

symplectic leaves of the system. They preserve the Casimir

invariants to second order (but there is no need to explicitly know

the invariants). Stationary solutions ζe of the Hamiltonian,

δHda[ζe] = 0,

capture all possible equilibria of the equations of motion.
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Energy Associated with DAVs

The energy of the perturbations is

δ2Hda[ζe] = 1

2

∫







δζσ

da

δ2H

δζσ δζτ
δζτ

da + δ2ζν
da

δH

δζν








d3x,

with ζ = (v, ρ, s,B) and repeated indices are summed.

This is essentially the expression obtained by Isichenko [17], though

he “guessed” at the form of δ2ζda and so obtained a slightly

incorrect result.

Positive-definiteness of δ2Hda[ζe] implies formal stability, which

implies linear stability, but not nonlinear stability.
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The form of the dynamically accessible perturbations is

ρ δvda = (∇× v)× χ0 + ρ∇χ1 − χ2∇s + B× (∇× χ3)

δρda = ∇ · χ0

δsda = ρ−1 χ0 · ∇s

δBda = ∇×

(

B× χ0

ρ

)

χ0, χ1, χ2, and χ3 are the arbitrary generating functions of the

variations. The variations for ρ, s, and B are the same as on

page 9, with χ0 = ρ η.

The combination of arbitrary functions in the definition of δvda

makes that perturbation arbitrary, in the same manner as the

perturbation δv on page 9.
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Remarks

• The two approaches, using Lagrangian perturbations vs

dynamical accessibility, lead to essentially the same stability

criterion.

• Dynamical accessibility can be used directly at the

Hamiltonian level, without any knowledge of underlying

Lagrangian dynamics. One needs to know the Poisson bracket

and Hamiltonian.

The magnetofluid system has a semidirect product structure,

which implies that it has a simple Lagrangian description. But

for some other systems, for example 2D compressible reduced

MHD [11], dynamical accessibility is easier to apply [18].
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• Dynamical accessibility has also been applied to

Vlasov–Maxwell equilibria [12, 13].

• The energy–Casimir method [9, 10], closely related to

dynamical accessibility, requires knowledge of the invariants

and doesn’t quite capture all equilibria. However, it can

sometimes be used to yield nonlinear stability criteria.
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