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Overview

We explore the meaning of the Casimir invariants of
some Lie–Poisson brackets.

Lie–Poisson brackets are a type of noncanonical
bracket and are ubiquitous in the reduction of canonical
Hamiltonian systems with symmetry. Examples include
the heavy top, the moment reduction of the Kida
vortex, the 2–D ideal fluid, reduced MHD, and the
1–D Vlasov equation.

Casimir invariants are conserved for all
Hamiltonians; they only occur for brackets with
degeneracy.

We review the derivation of Lie–Poisson brackets by
the method of reduction, and interpret their Casimir
invariants.
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We then turn to building Lie–Poisson brackets
directly from Lie algebras by the method of
extension, specifically the semidirect product of
algebras. Equations for the heavy top and low-beta
reduced MHD are obtained in this manner.

The Casimir invariants of the bracket determine the
manifold on which the system evolves. It is thus
important to understand what sort of constraints they
impose on a system. We show that, for the semidirect
product, the Casimir invariants yield information about
the configuration of the system, which was lost in the
reduction.

Finally, we investigate a case where the extension
is not of the semidirect type, namely compressible
reduced MHD. The Casimir invariants in that case
lend only partial information about the configuration
of the system.
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Reduction for the Free Rigid Body

Hamiltonian for the free rigid body in terms of Euler
angles:

H(pφ, pψ, pθ, φ, ψ, θ) =

1

2

{

[(pφ − pψ cos θ) sinψ + pθ sin θ cosψ]
2

I1 sin2 θ

+
[(pθ − pψ cos θ) cosψ − pθ sin θ sinψ]

2

I2 sin2 θ
+
p2

ψ

I3

}

Equations of motion are generated using the canonical
bracket:

{f , g} =
∂f

∂φ

∂g

∂pφ
+
∂f

∂ψ

∂g

∂pψ
+
∂f

∂θ

∂g

∂pθ
− (f ←→ g)

Here we have 3 degrees of freedom (6 coordinates).
The configuration space is the rotation group SO(3),
the phase space is T ∗SO(3).
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A reduction is possible for this system. In terms of
angular momenta,

H(pφ, pψ, pθ, φ, ψ, θ) −→ H(`1, `2, `3) =

3
∑

i=1

`2i
2Ii

Under this noncanonical mapping, the bracket
becomes of the Lie–Poisson form

{f , g} = −` ·
∂f

∂`
×
∂g

∂`

The equations of motion generated by the bracket from
H are permutations of

˙̀
1 =

I2 − I3
I2 I3

`2 `3

These are Euler’s equations for the rigid body. The
Hamiltonian is conserved, and so is the quantity

C =

3
∑

i=1

`2i

which commutes with any f(`). We call C a Casimir

invariant.
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Casimirs are conserved quantities for any
Hamiltonian, so they tell us about the topology of
the manifold on which the motion takes place. For the
simple case of the rigid body, the motion takes place
on the two-sphere, S2

The symmetry that permits the reduction is
the invariance of the equations of motion for
(φ, ψ, θ, pφ, pψ, pθ) under rotations. This symmetry
amounts to the freedom of choosing axes from which
the Euler angles are measured. In that sense it is a
relabeling symmetry, since the choice of axes amounts
to making “marks”, or labels, on the rigid body.

At any time the exact configuration of the
system is known (Lagrangian system), whereas the
reduced system is Eulerian because only the angular
momentum of the body is known.
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Reduction for the 2–D Ideal Fluid

Hamiltonian functional for a 2–D incompressible,
dissipationless fluid:

H[q;π] =

∫

D









π2

2ρ0

− p(a, t)

(
∣

∣

∣

∣

∂q

∂a

∣

∣

∣

∣

− 1

)







d2a,

π(a, t) is the momentum and q(a, t) is the position of
a fluid elements labeled by a.

This H together with the canonical bracket

{F ,G}
can

=

∫

D







δF

δq

δG

δπ
−
δG

δq

δF

δπ





 d2a

generates the equations of motion for a Lagrangian
fluid. The information about the position of every fluid
element at any time is contained in the model. There
is a relabeling symmetry of the initial condition labels,
a.
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We introduce the streamfunction φ

v(x, t) = (−∂y φ, ∂x φ)

so that ∇ · v = 0 is automatically satisfied, and the
vorticity

ω(x, t) = ẑ · ∇ × v .

The noncanonical transformation from Lagrangian to
Eulerian variables is

ω(x, t) =

∫

D

π(a, t)

ρ0

×∇δ(x− q(a, t)) d2a .

Then, after some manipulation involving integration by
parts we get the bracket

{F ,G} =

∫

D

ω

[

δF

δω
,
δG

δω

]

d2x

where

[f , g] :=
∂f

∂x

∂g

∂y
−
∂f

∂y

∂g

∂x
.
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The equation of motion generated by the bracket and
the transformed Hamiltonian

H[ω] = −
1

2

∫

D

φω d2x =
1

2

∫

D

|∇φ|2 d2x

is just Euler’s equation for an the ideal fluid

ω̇(x) = −[φ , ω] .

This has a Casimir given by

C[ω] =

∫

D

f (ω(x)) d2x,

where f is arbitrary. This invariant implies the
preservation of contours of ω, so that the value ω0

on a contour labels that contour for all times. By
choosing f(ω) = θ(ω(x) − ω0), a heavyside function,
it follows that the area inside of any ω-contour is
conserved.
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Extensions and the Semidirect Product

The simplest extension is the direct product of Lie
algebras. Let ξ, ξ′ be elements of a Lie algebra g

and η, η′ be elements of a vector space v (which is
an Abelian Lie algebra under addition). The direct
product of these two algebras is an algebra h of 2-
tuples, (ξ, η) with bracket

[ (ξ , η) , (ξ′ , η′) ] := ([ ξ , ξ′ ] , [ η , η′ ]) .

A less trivial extension is the semidirect product with
an operation defined by

[ (ξ , η) , (ξ′ , η′) ] := ([ ξ , ξ′ ] , [ ξ , η′ ] + [ η , ξ′ ]) .

An example of a semidirect product structure is when
g is the Lie algebra so(3) associated with the rotation
group SO(3) and v is R

3. Their semidirect product
is the algebra of the 6-parameter Galilean group of
rotations and translations.
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We can build Lie–Poisson brackets from these
algebras by extension by defining

{F ,G} := ±

〈

µ ,

[

δF

δµ
,
δG

δµ

]〉

,

where µ ∈ h∗, the dual of h under the pairing 〈 , 〉 :
h∗ × h → R. The dynamical variables of the system
are the elements of the n-tuple µ = µ(t). These
elements may be fields or variables, so the Lie–Poisson
bracket derived from an algebra by extension generates
the dynamics for a system involving several dynamical
quantities.

Using this procedure to make a Lie–Poisson bracket
from a direct product of algebras leads to a sum of n
independent brackets.

We illustrate the process of building a Lie–Poisson
bracket from a semidirect product of algebras by two
examples, which are extensions of the rigid body and
ideal fluid examples.
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The Heavy Top

The Lie–Poisson bracket for the semidirect product
of the rotation group and R3 is

{f , g} = −`·

(

∂f

∂`
×
∂g

∂`

)

−α·

(

∂f

∂`
×
∂g

∂α
+
∂f

∂α
×
∂g

∂`

)

where α denote a 3-vector. The Casimirs for this
bracket are

C1 = α2 , C2 = ` · α .

For a Hamiltonian quadratic in ` the vector α rotates
rigidly with the body. Knowing α does not lead to
a determination of the orientation of the rigid body:
there is still a symmetry of rotation about α. Taking
the semidirect product has led to the recovery of some
of the Lagrangian (configuration) information.
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By using

H(`, α) =

3
∑

i=1

`2i
2Ii

+ α · c

we get the prototypical example of a semidirect product
system, the heavy rigid body (in the body frame):

˙̀
1 =

I2 − I3
I2 I3

`2 `3 + α2 c3 − α3 c2

α̇1 =
`3α2

I3
−
`2α3

I2

�����������

�
�
�
�
�
�
�
�

c

O

α
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Low–β Reduced MHD

The semidirect product bracket for two fields is

{F ,G} =

∫

D

(

ω

[

δF

δω
,
δG

δω

]

+ ψ

([

δF

δω
,
δG

δψ

]

+

[

δF

δψ
,
δG

δω

]))

d2x

If ω = ∇2φ, where φ is the electric potential, ψ is the
magnetic flux, and J = ∇2ψ is the current, then the
Hamiltonian

H[ω;ψ] =
1

2

∫

D

(

|∇φ|2 + |∇ψ|2
)

d2x

with the above bracket gives us

ω̇ = [ψ, J ] + [ω, φ] ,

ψ̇ = [ψ, φ] ,

a model for low-β reduced MHD derived by Morrison
and Hazeltine.
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The bracket has Casimir invariants

C1[ψ] =

∫

D

f(ψ) d2x, C2[ω;ψ] =

∫

D

ω g(ψ) d2x.

The first has the same form as the one for 2–D Euler
and has the same interpretation. To make sense of the
second one let g(ψ) = θ(ψ − ψ0).

C2[ω;ψ] =

∮

Ψ0

ω d2x.

where Ψ0 represents the (not necessarily connected)
region of D enclosed by the contour ψ = ψ0, and ∂Ψ0

is its boundary. The contour ∂Ψ0 moves with the fluid,
so this just expresses Kelvin’s circulation theorem: the
circulation around a closed material loop is conserved.

Sherwood 98 14



Putting Labels on a Rigid-body

Remember that taking a semidirect product restricted
the symmetry group of the body to rotations about α.
If we take another semidirect product to get

{f , g} = −` ·

(

∂f

∂`
×
∂g

∂`

)

− α ·

(

∂f

∂`
×
∂g

∂α
+
∂f

∂α
×
∂g

∂`

)

− β ·

(

∂f

∂`
×
∂g

∂β
+
∂f

∂β
×
∂g

∂`

)

where β is a 3-vector, the new bracket has Casimirs

C1 = α2 , C2 = β2, C3 = α · β .

The angular momentum ` has disappeared from the
Casimirs.
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This can model a rigid body with two forces acting
on it.

�����������
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�

cα

O

α

β

cβ

Note that knowing α and β completely specifies the
orientation of the rigid body. In other words, by
taking semidirect products we have reintroduced the
Lagrangian information into the bracket.
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Advection in an Ideal Fluid

For the ideal fluid, say low-β MHD with a second
advected quantity, the pressure p, the Casimir is

C[ψ; p] =

∫

D

f(ψ, p) d2x, f arbitrary.

This Casimir tells us we can label two contours. Locally
this permits a unique labeling of the fluid elements
as long as ∇ψ × ∇p does not vanish. However,
globally there is still some ambiguity. Thus, in
the infinite-dimensional case the semidirect product
is not equivalent to recovering the full Lagrangian
information, unless the contours do not close and are
monotonic.
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Beyond Semidirect: Cocycles

There are other ways to extend Lie algebras than the
semidirect product. We have investigated brackets of
the form

[α , β ]λ = Wλ
µν [αµ , βν ]

where λ is a component of an n-vector.

One example is the bracket derived by Hazeltine,
Kotschenreuther, and Morrison (1985) for 2–D
compressible reduced MHD, which has four fields. The
Hamiltonian is

H[ω; v; p;φ] =
1

2

〈

|∇φ|2 + v2 +
(p− 2β x)2

β
+ |∇ψ|2

〉

.
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The bracket is rather large,

{A ,B} =

〈

ω ,

[

δA

δω
,
δB

δω

]〉

+

〈

v ,

[

δA

δω
,
δB

δv

]

+

[

δA

δv
,
δB

δω

]〉

+

〈

p ,

[

δA

δω
,
δB

δp

]

+

[

δA

δp
,
δB

δω

]〉

+

〈

ψ ,

[

δA

δω
,
δB

δψ

]

+

[

δA

δψ
,
δB

δω

]

− β

[

δA

δp
,
δB

δv

]

− β

[

δA

δv
,
δB

δp

]〉

The term proportional to β is an obstruction to the
semidirect product structure, and it cannot be removed
by a coordinate transformation. In the language of Lie
algebra cohomology it is a cocycle.
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Its Casimirs are

C1[ψ] =

∫

D

f(ψ) d2x

C2[p;ψ] =

∫

D

p g(ψ) d2x

C3[v;ψ] =

∫

D

v h(ψ) d2x

C4[ω, v, p, ψ] =

∫

D

(

ωk(ψ) +
v p

β
k′(ψ)

)

d2x

These do not allow a labeling of the fluid elements.
Finding the invariant C4 directly from the equations of
motion would be tedious, but is straightforward from
the bracket.
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The meaning of invariants of the form of C1, C2, and
C3 has already been discussed: the total magnetic flux,
pressure, and parallel velocity inside of any ψ-contour
are preserved.

To understand C4 we use the fact that ω = ∇2φ and
then integrate by parts to obtain

C4[ω, v, p, ψ] =

∫

D

(

−∇φ · ∇ψ +
v p

β

)

k′(ψ) d2x.

The quantity in parentheses is thus invariant inside of
any ψ-contour.
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It can be shown that this is a remnant of the
conservation in the full MHD model of the cross
helicity,

V =

∫

D

v ·B d2x ,

at second order in the inverse aspect ratio, while C3 is
a consequence of preservation of this quantity at first
order. Here B is the magnetic field.

As for C1 and C2 they are, respectively, the first and
second order remnants of the preservation of helicity,

W =

∫

D

A ·B d2x,

where A is the magnetic vector potential.
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Conclusions

• We gave an introduction to the reduction of
physical systems based on their symmetries.

• The prototypical examples were shown, the rigid
body and the 2–D ideal fluid.

• The semidirect product allows us to describe the
group acting on larger systems. This led to
the recovery of some or all of the Lagrangian
information.

• For general extensions (not necessarily semidirect)
things are different: the Lagrangian information
is not necessarily a consequence of the Casimirs.
However, for compressible reduced MHD the
Casimirs represent constraints that are remnants
of invariants of the full MHD equations from which
the model is derived asymptotically.
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