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Overview

Kinematic transport processes are described by equations such as

the advection-diffusion equation

∂φ

∂t
+ v · ∇φ = ∇ · (D∇φ)

where the Eulerian velocity field v(x, t) is some prescribed

time-dependent flow. The quantity φ represents the concentration

of some passive scalar, and D is the diffusion coefficient.

When the Lagrangian trajectories are chaotic, the diffusion is

enhanced greatly due to the exponential stretching of fluid

elements. This is known as chaotic mixing.
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Lagrangian Coordinates

The trajectory of a fluid element in Eulerian coordinates x satisfies

dx

dt
(ξ, t) = v(x(ξ, t), t),

where ξ are Lagrangian coordinates that label fluid elements. The

usual choice is to take as initial condition x(ξ, t = 0) = ξ, which

says that fluid elements are labeled by their initial position.

x = x(ξ, t) is thus the transformation from Lagrangian (ξ) to

Eulerian (x) coordinates.

For a chaotic flow, this transformation gets horrendously

complicated as time evolves.
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Lyapunov Exponents

The rate of exponential separation of neighbouring Lagrangian

trajectories is measured by Lyapunov exponents

λ∞ = lim
t→∞

1

t
ln ‖(Txv)û0‖,

where Txv is the tangent map of the velocity field (the matrix

∂v/∂x) and û0 is some constant vector.

Lyapunov exponents converge very slowly. So, for practical

purposes we are always dealing with finite-time Lyapunov

exponents.
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The Idea

• The coordinate transformation x(ξ, t) is best studied using the

tools of differential geometry.

• For instance: the Riemann curvature tensor is a quantity which

is invariant under coordinate transformations. In “normal”

space, the Riemann tensor vanishes. Therefore, it must also

vanish in Lagrangian coordinates.

• Enforcing the vanishing of the Riemann tensor allows us to

derive constraints on the spatial dependence of finite-time

Lyapunov exponents and their associated characteristic

directions.

• Can be tied to the local efficiency of mixing in a flow.
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The Metric Tensor

The metric tensor in Lagrangian coordinates is defined by

gij(ξ, t) ≡
∑

`

∂x`

∂ξi

∂x`

∂ξj
.

(gij is the flat metric δij transformed to Lagrangian coordinates.)

g is a symmetric positive-definite matrix that tells us the distance

between two infinitesimally separated points in Lagrangian space

ds2 = dx · dx = gij dξ
idξj .

The eigenvalues Λµ(ξ, t) of g are thus related to the finite-time

Lyapunov exponents by

λµ(ξ, t) = ln Λµ(ξ, t)/2 t
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Stable and Unstable Directions

At a fixed coordinate ξ, there are directions ê and ŝ associated

with the largest and smallest Lyapunov exponent, respectively:

e

s

e

s

The characteristic directions ê(ξ, t) and ŝ(ξ, t) converge

exponentially to their asymptotic values ê∞(ξ) and ŝ∞(ξ), whereas

Lyapunov exponents λµ(ξ, t) converge logarithmically to λ∞µ .
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Model System

Oscillating convection rolls: v = (−∂yψ, ∂xψ), with

ψ(x, t) = Ak−1(sin kx sinπy + ε cosωt cos kx cosπy)
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ŝ∞ field for oscillating rolls with A = k = ε = ω = 1, with two

typical portions of the stable manifold in red and blue.
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The Advection-diffusion Equation

Under the coordinate change to Lagrangian variables the diffusion

term becomes

∇ · (D∇φ) =
∂

∂xi

(

Dδij ∂φ

∂xj

)

=
∂

∂ξi

(

Dgij ∂φ

∂ξj

)

.

In Lagrangian coordinates the diffusivity becomes Dgij : it is no

longer isotropic.

The advection-diffusion equation is thus just the diffusion equation,

∂φ

∂t
=

∂

∂ξi

(

Dgij ∂φ

∂ξj

)

,

because by construction the advection term drops out.
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Diffusion along ŝ∞ and ê∞

The metric gij can be written in diagonal form as

gij = Λe ê ê + Λm m̂ m̂ + Λs ŝ ŝ

where Λµ = exp(2λµt). The inverse gij is

gij = Λ−1
e ê ê + Λ−1

m m̂ m̂ + Λ−1
s ŝ ŝ

The diffusion coefficients along the ŝ and ê directions are

Dss = si(Dg
ij)sj = D exp(−2λs t),

Dee = ei(Dg
ij)ej = D exp(−2λe t).

For a chaotic flow, Dee goes to zero exponentially quickly, while

Dss grows exponentially.

Hence, essentially all the diffusion occurs along the ŝ-line.
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Riemannian Curvature

Differential geometry tells us that if a metric describes a flat space,

then its Riemann curvature tensor

Rm
ijk ≡ Γm

ji,k − Γm
ki,j + Γm

ks Γs
ji − Γm

js Γs
ki,

must vanish in every coordinate system.

The Christoffel symbols Γ contain derivatives of the metric,

Γi
jk ≡ 1

2g
i` (g`j,k + g`k,j − gjk,`)

In three dimensions, the Riemann tensor has six independent

components, equivalent to the Ricci tensor Rik ≡ Rj
ijk.

In two dimensions, the Riemann tensor has one independent

component, equivalent the Ricci scalar R ≡ gik Rik.
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Two-dimensional Case

In two dimensions, the Ricci scalar written in terms of the

characteristic directions ŵ
(µ) = (ê, ŝ) is

R =

2
∑

µ=1

1
√

|g|
∇0 ·

(

Λ−1/2
µ ŵ

(µ) ∇0 ·
(

√

|g|Λ−1/2
µ ŵ

(µ)
))

Notice that the Lyapunov exponent enter as Λ
−1/2
µ = exp(−λµ t).

The 0 subscript on ∇ denotes derivatives with respect to the

Lagrangian coordinates, ξ.
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A Nonchaotic Example

As a simple demonstration, let us take the flow

v(x1, x2) = (0, f(x1)). The Lagrangian trajectories are

x1 = ξ1

x2 = ξ2 + t f(ξ1)

The metric tensor is then

gij =
∑

`

∂x`

∂ξi

∂x`

∂ξj
=





1 + t2 f ′(ξ1)
2 t f ′(ξ1)

t f ′(ξ1) 1





The eigenvalues and eigenvectors of g are then easily derived.

Direct insertion into the formula for the 2D curvature confirms,

after a tedious calculation, that it does indeed vanish identically.
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The Chaotic Case

Assume the Lagrangian trajectories are chaotic (which in 2D

requires a time-dependent v). The Ricci scalar is the sum of two

terms:

1
√

|g|
∇0 ·

(

e−λe t
ê∇0 ·

(

√

|g| e−λe t
ê

))

∼ exp(−2|λe| t)

1
√

|g|
∇0 ·

(

e−λs t
ŝ∇0 ·

(

√

|g| e−λs t
ŝ

))

∼ exp(+2|λs| t)

These terms cannot balance each other unless

1
√

|g|
∇0 ·

(

e−λ̃s ŝ∇0 ·
(

√

|g| e−λ̃s ŝ

))

∼ exp(−2|λ∞s | t) −→ 0

where λ̃s(ξ, t) = λs(ξ, t) − λ∞s .

The form assumed for the diagonalized metric is too general: the

characteristic directions and exponents are related to each other.
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Now let

K ≡
1

√

|g|
∇0 ·

(

√

|g| e−λ̃s ŝ

)

Then the constraint can be written

(e−λ̃s ŝ · ∇)K =
dK

dτ
= −K2

K will decrease without bound on an ŝ-line with a value dependent

on the choice of parameter τ , unless K = 0. Hence:

1
√

|g|
∇0 ·

(

√

|g| e−λ̃s ŝ

)

−→ 0

or
1

√

|g|
∇0 ·

(

√

|g| ŝ
)

− ŝ · ∇0λs t −→ 0
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Convergence on the ŝ∞-line

∇0 · ŝ∞ − (̂s∞ · ∇0)λs t evaluated on an ŝ∞-line.

τ τ τ

τττ

t = 1 t = 2 t = 3

t = 5 t = 10 t = 20

τ is the distance along the red ŝ∞-line on page 9.

Green: −∇0 · ŝ∞

Red: (̂s∞ · ∇0)λ t.
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The Three-dimensional Case

In a coordinate system aligned with the characteristic directions

ŵµ ≡ (ê, m̂, ŝ), a typical diagonal element of the Ricci tensor is

Ree =
1

√

|g|
∇0 ·

[

√

|g|
(

Λ−1
(e) ê (H(sm) −H(ms))

)]

−
1

√

|g|
∇0 ·

[

√

|g|

(

Λ−1
(m) m̂H(se) + Λ−1

(s) ŝH(me)

)]

+2Λ−1
(e) H

(ms)H(sm)+
1

2|g|

[

(

Λ(m)H
(mm) − Λ(s)H

(ss)
)2

− Λ2
(e)H

(ee)2
]

where the characteristic helicities are defined as

H(µν) ≡ Λ
−1/2
(ν) ŵ

(µ) · ∇0 × (Λ
1/2
(ν) ŵ

(ν))

and |g| ≡ det g.
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If we seek to balance the terms that grow exponentially in the Ricci

tensor, we find that

H(em) −→ 0 and H(me) −→ 0

This is equivalent to

ê · ∇0 × m̂ − ŝ · ∇λm t −→ 0

m̂ · ∇0 × ê + ŝ · ∇λe t −→ 0

Taking the difference of these two constraints yields

1
√

|g|
∇0 ·

(

√

|g| ŝ
)

− ŝ · ∇0λs t −→ 0,

the same constraint as in two dimensions. This was observed

numerically for incompressible flows in 3D by Tang and Boozer

(1999). The two constraints involving the helicities are new.
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ABC Flow

To exhibit the convergence of these quantities, we use the ABC

flow,

v(x) = A (0, sinx1, cosx1)+B (cosx2, 0, sinx2)+C (sinx3, cosx3, 0)

a sum of three Beltrami waves that satisfy ∇× v ∝ v. It is

time-independent and incompressible (|g| = 1).

This flow is well-studied in the context of dynamo theory. We shall

be using the habitual parameter values of A = B = C = 1 in

subsequent examples.
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ABC Flow, A = B = C = 1
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ABC Flow, A = B = C = 1
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More Constraints. . .

The story is not quite complete: the “balance of curvature” also

requires that

ΛeH
(ee) ∼ ΛmH(mm)

or

Λe (ê · ∇0 × ê) ∼ Λm (m̂ · ∇0 × m̂)

This constraint is slightly different in nature than the previous

ones, since it involves no λ derivatives.
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ABC Flow, A = B = C = 1

0 2 4 6
t

-15

-10

-5

0

5

Hee

Hmm



25'

&

$

%

ABC Flow, A = B = C = 1
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Curvature and Lyapunov Exponents
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Finite-time Lyapunov exponent λs(ξ(τ), t) has local minima near

high-curvature κ ≡ (̂s · ∇0)̂s regions of ŝ-line.
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Conclusions

• Diffusion occurs overwhelmingly along the stable direction.

• Relationships between characteristic directions and exponents.

These work best in highly chaotic flows.

• Sharp bends in the ŝ line lead to locally small finite-time

Lyapunov exponents (diffusion is hindered).

• Verified constraints directly on oscillating-rolls flow in 2D and

ABC flow in 3D.

• Seek applications to characterize mixing properties in 2D and

3D fluids, and to the dynamo problem in plasmas.


