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Stirring and Mixing of Viscous Fluids

• Viscous flows ⇒
no turbulence! (laminar)

• Open and closed systems

• Active (rods) and passive

Understand the mechanisms involved.
Characterise and optimise the efficiency of mixing.
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Stirring and Mixing: What’s the Difference?

• Stirring is the mechanical motion of the fluid (cause);

• Mixing is the homogenisation of a substance (effect, or goal);

• Two extreme limits: Turbulent and laminar mixing, both
relevant in applications;

• Even if turbulence is feasible, still care about energetic cost;

• For very viscous flows, use simple time-dependent flows to
create chaotic mixing.
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Diffusion

The governing equation for the natural diffusion (“dispersal”) of a
substance (heat, dye, chemical. . . ) is the diffusion equation:

∂θ

∂t
= κ∇2θ

• θ(x, t) is the concentration of something we need to mix;

• κ is the diffusion coefficient;

The main problem is that natural (or molecular) diffusion is usually
really slow. For example, the diffusion constant for heat is
κ = 2.4× 10−5 m2/s. If a room is L = 10m wide, the typical time
for heat to diffuse across is L2/κ ' 1000 hours (48 days).

This would make space heaters useless!
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Advection and Diffusion

So what did we leave out? We omitted the effect of stirring, which
creates a flow u(x, t), giving the advection–diffusion equation:

∂θ

∂t
+ (u · ∇)θ = κ∇2θ

The impact of the new term, called the advection or convection
term, is tremendous.

Its role is to increase spatial gradients of θ, which makes the
Laplacian term ∇2θ massive, even if κ is small.

This is why space heaters work: the rising hot air creates currents
that help to ‘stir’ the air in a room.

Thus, stirring causes mixing to occur much faster.
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A Simple Example: Planetary Mixers

In food processing, rods are often used for stirring.

[movie 1] c©BLT Inc.
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The Figure-Eight Stirring Protocol

• Circular container of viscous fluid
(sugar syrup);

• A rod is moved slowly in a
‘figure-eight’ pattern;

• Gradients are created by
stretching and folding, the
signature of chaos.

[movie 2] Experiments by E. Gouillart and O. Dauchot (CEA Saclay).
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The Mixing Pattern

• Kidney-shaped mixed region extends to wall;

• Two parabolic points on the wall, one associated with
injection of material;

• Asymptotically self-similar, so expect an exponential decay of
the concentration (‘strange eigenmode’ regime).
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Mixing is Slower Than Expected
Concentration field in a well-mixed central region

Variance =
∫
|θ|2dV Concentration PDFs

⇒ Algebraic decay of variance 6= Exponential

The ‘stretching and folding’ action induced by the rod is an
exponentially rapid process (chaos!), so why aren’t we seeing
exponential decay?
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Walls Slow Down Mixing

t t + 1
2

d(t)

• Trajectories are (almost) everywhere chaotic
⇒ but there is always poorly-mixed fluid near the walls;

• Re-inject unmixed (white) material along the unstable manifold of a
parabolic point on the wall;

• No-slip at walls ⇒ width of “white stripes” ∼ t−2 (algebraic);

• Re-injected white strips contaminate the mixing pattern, in spite of
the fact that stretching is exponential in the centre;

• [Gouillart et al., Phys Rev. Lett. 99, 114501 (2007)] → map model.
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A Second Scenario

How do we mimic a slip boundary condition?

“Epitrochoid” protocol

Central chaotic region + regular region near the walls.

11 / 26



Stirring and Mixing Rod Stirring Topology Multiphase Flows Conclusions References

Recover Exponential Decay

t = 8 t = 12 t = 17

. . . as well as ‘true’ self-similarity.
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Another Approach: Rotate the Bowl!
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Self-similarity: Another Example
[movie 3]
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The Taffy Puller

This may not look like
it has much to do
with stirring, but no-
tice how the taffy is
stretched and folded ex-
ponentially.

Often the hydrodynam-
ics are less important
than the precise nature
of the rod motion!

[movie 4]
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Experiment of Boyland, Aref, & Stremler

[movie 5] [movie 6]

[P. L. Boyland, H. Aref, and M. A. Stremler, J. Fluid Mech. 403, 277 (2000)]
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Topological Mixers

• The mathematical idea in the previous slide is called braiding,
and is a consequence of the topology of the rod motion.

• There is an optimal rod motion from this viewpoint, and we
have designed stirring devices that implements it:

Notice how every rod ‘leapfrogs’ the next one. [movie 7]
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Four Rods

The central rod only plays a supporting role (literally).

[movie 8] [movie 9]
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Six Rods

[movie 10]
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Multiphase Flows: Making Mayonnaise

“One day she... gave me a demonstration on how to make
mayonnaise. I had no idea it was so technical... She whisked the
mustard with one yolk for a few minutes, then started dribbling in
the oil. As soon as any separation appeared she whisked even
faster and continued whisking and oiling for long enough to make
my wrist hurt, let alone hers. It was riveting, like watching an old
master mixing his ochres with his burnt siennas.”

[M. Lipman, “Ireland: land of charm, humour, breathtaking vistas... and

delicious homemade mayonnaise?”, The Guardian, 21 August 2006.]
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Multiphase Flows: Stirring and Mixing

• Two immiscible fluids will phase-separate if left alone:

• Oil and vinegar do this, as do some metallic alloys.

• From the vinaigrette case, it is well known that you have to
keep stirring to homogenise the mixture.

• How can we model this?
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The Stirred Cahn–Hilliard Equation

• The passive stirring of a phase separated fluid is modelled by
an advective term in the Cahn–Hilliard equation,

∂θ

∂t
+ u · ∇θ = D∇2

(
θ3 − θ − γ∇2θ

)
.

• The CH equation is a classic model of phase-separating fluids:
the separated state is more energetically favourable, so the
system tends to it.

• Once again stirring can short-circuit this.

• Two co-existing regimes exist, depending on the strength of
the stirring: Bubbles and filaments.
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From Bubbles to Filaments
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Efficiency of Stirring
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σ2/F (numerical)

σ2/F∼ e(−25λ )

σ2/F∼λ 1/3

Here σ2/F is a measure of the homogeneity, for a steady stirring
strength λ. Note that there is a sudden improvement at λ ' 10−2

corresponding to the bubbles-to-filaments transition.
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Conclusions

• There are many ways to stir: here we focused on rod stirring.

• Walls can have a big impact and slow down mixing.

• It is sometimes possible to shield the walls from the mixing
region, for instance by rotating the vessel.

• Having rods undergo complex ‘braiding’ motions can lead to
good mixer designs.

• For phase separating substances, an imposed flow not only
arrests phase-separation, but can overcome it.

• For vigorous stirring, the phases are therefore well-mixed.

• The numerical simulations suggest the existence of a critical
stirring amplitude for multiphase mixing.
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