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Drag Reduction

Experimental facts:

• Toms (1948) observed that the addition of ∼ 10 ppm
polymers to turbulent pipe flow reduced the pressure drop
substantially.

• Typical example: polyethilene oxide in water: 18 ppm (by
weight) reduces drag by 33%!!

• Qualitative understanding: classic review of Lumley (1969)
uses dimensional analysis (polymer size, viscosity, etc.) to
predict magnitude and onset of effect.

• Molecular scales matter! Mystery. . .
• . . . and motivation for studying polymers in turbulent flows.
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Polymers

Polymers are long chains of molecules. Random walk at rest.
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Constitutive Models

Model polymers in dilute solution as a continuum:
Stress on the fluid.

How does the stress tensor T depend on the state of the fluid?

• Elastic:

Tij = η γij , γ ≡ strain (deformation) tensor.

• Viscous or Newtonian:

Tij = µ γ̇ij , γ̇ ≡ ∇u + (∇u)T

• Viscoelastic:

Tij =

∫ t

−∞

G(t − t′) γ̇ij(t
′) dt′
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Maxwell Model

Exponentially-decaying memory:

Tij = (µ/τ)

∫ t

−∞

e−(t−t′)/τ γ̇ij(t
′) dt′

Reformulate as differential equation for T:

τ Ṫij = µ γ̇ij − Tij

Problem: not frame-indifferent!
Not good as a fluid relation. Remedied by introducing a
frame-independent (Oldroyd) derivative

Ṫ =⇒ DT ≡
∂T

∂t
+ u · ∇T − (T · ∇u + (∇u)T · T)
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The Equations of Motion

Couple stress to Navier–Stokes for an incompressible fluid:

∂u

∂t
+ u · ∇u + ∇p = ν∇2

u +
s

τ
∇ · A ;

DA = −
1

τ

(

A − ρ2
0 I

)

; ∇ · u = 0,

where A is equal to T up to constants, and can be regarded as the
local deformation of the polymers, with A = ρ2

0 I at rest.

Can be derived from a kinetic model of “Hookean dumbbells.”

More generally: allow nonlinear saturation of the length of
polymers (FENE-type models)

DA = −
1

τ

(

F (A) A − ρ2
0 I

)

.
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Evolution of the Principal Axes

The polymer conformation tensor A can be diagonalized, with
orthonormal eigenvectors eα and eigenvalues (ρα)2 that evolve
according to

dρα

dt
= σ̂αρα −

1

τ

(

F (‖ρ‖2)ρα − ρ2
0/ρ

α
)

,

σ̂α(t, x) ≡ eα · ∇u · eα , d/dt = ∂/∂t + u · ∇ .

The ρα are the lengths of the principal axes of the ellipsoid
delineating the deformation of the polymer.
If the flow is smooth, the polymers tend to align with the
dominant stretching direction, so we consider only the major axis:

dρ

dt
= σ̂ρ −

1

τ
F (ρ2)ρ . (Neglect ρ0.)
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Turbulence! (well. . . sort of)

For turbulence, a locally smooth regime is achieved when the
viscous scale is much longer that the polymer length.

In that case, model the velocity field as a Gaussian random
variable representing a smooth straining field σ̂(t) that changes
rapidly; σ̂ satisfies

〈σ̂(t)σ̂(t′)〉 − λ̄2 = δ(t − t′) ∆ ; 〈σ̂(t)〉 = λ̄ ,

where the angle brackets denote an average over σ̂.

The variable σ̂(t) is δ-correlated in time, which means that it
forgets about its previous state immediately. It has mean λ̄ and
standard deviation ∆.

This “slightly” artificial situation has great analytical advantages.
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Steady-state Distribution

Because the distribution of σ̂(t) is Gaussian and δ-correlated, can
obtain a Fokker–Planck equation for the distribution P(t, ρ) of the
major axis: (Chertkov, 2000)

∂tP = 1
2∆ ∂ρρ ∂ρρP − λ̄ ∂ρ ρP +

1

τ
∂ρ F (ρ2)ρP

Assuming a FENE-type (Finite Extension Nonlinear Elastic)
model which limits the length of the polymers to ρm, can find
equilibrium distribution (J.-L.T., in preparation)

Peq(ρ) =
Γ(1 + λ̄/∆)

2 Γ(λ̄/∆ − ξ)Γ(1 + ξ)
ρ−1+2(λ̄/∆−ξ)(1 − ρ2)ξ

where ρ is normalized by ρm, and ξ ≡ 1/τ∆.
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Moments of the Distribution

Coil-stretch transition at De = 1.
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Ongoing Research

• Polymers are often delicate: try predict when they start to
break.

• Model polymer as flexible chains instead of rods.
• Self-consistency: backreaction of the polymers on the fluid.
• Non-Gaussian statistics: Path integral formalism.
• Compressibility.
• Magnetic dynamo.
• Statistics of curvature.
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