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What is the Deal

We are interested in the advection-diffusion equation:

O 1
E—i—v-ng—;V-(pDqu)

where the Eulerian velocity field v(a,t) is some prescribed
time-dependent flow, which may or may not be be chaotic. The
quantity ¢ represents the concentration of some passive scalar, p is

the density, and D is the diffusion coefficient.

We assume that the Lagrangian dynamics are strongly chaotic
(AL?/D > 1).
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Lagrangian Coordinates

The trajectory of a fluid element in Eulerian coordinates @ satisfies

dx
dt

where & are Lagrangian coordinates which label fluid elements. The

(&:1) = v(x(&:1), 1),

usual choice is to take as initial condition x(&,t = 0) = &, which

says that fluid elements are labeled by their initial position.

x = x(&,1) is thus the transformation from Lagrangian (§) to
Eulerian (x) coordinates.

This transformation gets horrendously complicated as time evolves.
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Lyapunov Exponents

The rate of exponential separation of neighbouring Lagrangian

trajectories is measured by Lyapunov exponents

1
Moo = tlim " In||(Tev)wol,

where T, v is the tangent map of the velocity field (the matrix
Ov/0x) and w( is some constant vector.

Lyapunov exponents converge very slowly. So, for practical
purposes we are always dealing with finite-time Lyapunov

exponents.
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(Welander, 1955)
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The Idea

Can we characterize the spatial and temporal evolution of

finite-time Lyapunov exponents in a generic manner?

Can we quantify the impact of these exponents on diffusion?

Tang and Boozer brought the fancy tools of differential

geometry to bear on this problem.

Results: a generic functional form for the time evolution of
finite-time Lyapunov exponents, and a relation between their

spatial dependence and the shape of the stable manifolds.
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A little differential geometry ...

The Jacobian of the transformation from Lagrangian (£)to Eulerian

(&) coordinates

oz’
0&I

JijE

The Jacobian tells us how tensors transform:

e (Covariant:

= k

Vi =J%; Vi,
e Contravariant:

Wt =Ji, Wk,
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Measuring distances

The distance between two infinitesimally separated points in
Eulerian space is given by

ds® = dx - dx = 0ij dxtdx’ .

Therefore, in Lagrangian coordinates distances are given by

ds® = 0, (dgk dé ) (‘;Z dé ) = (J' 645 J7 ) deFde® .
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The Metric Tensor

The tensor d;; is a metric in the Eulerian (Euclidean) space. The

tensor
gre(§, 1) ZJZ/.C Je=(J"J),,

is the same metric tensor but in the Lagrangian coordinate system.

Since the metric tells us about the distance between two
neighbouring Lagrangian trajectories, its eigenvalues are related to

the finite-time Lyapunov exponents.
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We will now restrict ourselves to a 2-D, incompressible velocity
field v. This means that

2-D Incompressible Flow

det g = (det J)* = 1.

orthonormal eigenvectors é(&,t) and §(&,1):

gre(€,1) = Aepeg + At s s

The finite-time Lyapunov exponents are given by

ME 1) = InA(€,1)/2t

N
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Now, g is a positive-definite symmetric matrix, which implies that
it has real positive eigenvalues, A(£,t) > 1 and A71(&,¢) < 1, and
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At a fixed coordinate &:

Stable and Unstable Directions

e e

The stable and unstable manifolds &é(&,t) and §(&,t) converge

Lyapunov exponents converge logarithmically.

N

exponentially to their asymptotic values €, (&) and 8§, (&), whereas
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Soo-line for the standard map with £ = 1.5.
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Y(x,t) = Ak~ (sin kx sin Ty + € cos wt cos kx cos Ty)

Oscillating convection rolls (A =k =€e=w =1).
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The Advection-diffusion Equation

Under the coordinate change to Lagrangian variables the diffusion

term becomes

9,
ox’

i 00 0 ;00

V- (DV9¢) =

In Lagrangian coordinates the diffusivity becomes Dg%: it is no

longer isotropic.

The advection-diffusion equation is thus just the diffusion equation,

06 0 .09

because by construction the advection term drops out.
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Diffusion along S, and é.

The diffusion coefficients along the S, and €., lines are
D% = 500;(Dg"”)s00; = Dexp(2At),
D®® = exi(Dg")en; = Dexp(—2At).

We see that D¢ goes to zero exponentially quickly. Hence,

essentially all the diffusion occurs along the Soo line.
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Differential geometry tells us if a metric describes a flat space, then

Riemann Curvature Tensor

its Riemann curvature tensor must vanish in every coordinate

system.

After some tedious algebra, we find this implies that the quantity

S0 - VOME D)t + Vo - 8o

converges to 0 exponentially. Hence, it can be shown that the

finite-time Lyapunov exponents must have the form

Aty = MO D

t Vi

where 84, - Vof = 0 (the 1/+/t factor comes from known results on

\the variance of the exponents). /
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Example:

0.35F
0.30F "

0.25F

<A>

0.20F

0.15F

0.10¢

Dotted: Numerical
Solid: 0.305/t + 0.175/v/t + 0.117

Allows us to determine Ao, = 0.117 rapidly and accurately.
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Standard map, 5th iteration, £ = 50 (curvature k = (800 - V)80 )-

/

19



kappa

100 |

0.01 .

0. 0001 .

. 10°°

| | | | ‘ ‘ - | anbda
2.8 3 3.2 3.4 3.6 3.8 4

Standard map, bth iteration, £ = 50.
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Conclusions

Diffusion occurs overwhelmingly along the stable direction.

The spatial dependence of Lyapunov exponents along 8 lines is

contained in the smooth function \(¢), which decays as 1/t.

The notoriously slow convergence of Lyapunov exponents is

embodied in the function f(&,t), which is constant on § lines
and decays as 1/+/t.

Relation between 8o (€), £ = (800 - V)00, and A(£).

Sharp bends in the S line lead to locally small finite-time

Lyapunov exponents (diffusion is hindered).

Test on flows.
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