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What is the Deal

We are interested in the advection-diffusion equation:

∂φ

∂t
+ v · ∇φ =

1

ρ
∇ · (ρD∇φ)

where the Eulerian velocity field v(x, t) is some prescribed

time-dependent flow, which may or may not be be chaotic. The

quantity φ represents the concentration of some passive scalar, ρ is

the density, and D is the diffusion coefficient.

We assume that the Lagrangian dynamics are strongly chaotic

(λL2/D � 1).
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Lagrangian Coordinates

The trajectory of a fluid element in Eulerian coordinates x satisfies

dx

dt
(ξ, t) = v(x(ξ, t), t),

where ξ are Lagrangian coordinates which label fluid elements. The

usual choice is to take as initial condition x(ξ, t = 0) = ξ, which

says that fluid elements are labeled by their initial position.

x = x(ξ, t) is thus the transformation from Lagrangian (ξ) to

Eulerian (x) coordinates.

This transformation gets horrendously complicated as time evolves.
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Lyapunov Exponents

The rate of exponential separation of neighbouring Lagrangian

trajectories is measured by Lyapunov exponents

λ∞ = lim
t→∞

1

t
ln ‖(Txv)w0‖,

where Txv is the tangent map of the velocity field (the matrix

∂v/∂x) and w0 is some constant vector.

Lyapunov exponents converge very slowly. So, for practical

purposes we are always dealing with finite-time Lyapunov

exponents.
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The Idea

• Can we characterize the spatial and temporal evolution of

finite-time Lyapunov exponents in a generic manner?

• Can we quantify the impact of these exponents on diffusion?

Tang and Boozer brought the fancy tools of differential

geometry to bear on this problem.

• Results: a generic functional form for the time evolution of

finite-time Lyapunov exponents, and a relation between their

spatial dependence and the shape of the stable manifolds.
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A little differential geometry . . .

The Jacobian of the transformation from Lagrangian (ξ)to Eulerian

(ξ) coordinates

J i
j ≡ ∂xi

∂ξj

The Jacobian tells us how tensors transform:

• Covariant:

Ṽj = Jk
j Vk,

• Contravariant:

W̃ i = J i
k W

k.
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Measuring distances

The distance between two infinitesimally separated points in

Eulerian space is given by

ds2 = dx · dx = δij dx
idxj .

Therefore, in Lagrangian coordinates distances are given by

ds2 = δij

(

dxi

dξk
dξk

) (

dxj

dξ`
dξ`

)

= (J i
k δij J

j
`) dξ

kdξ` .
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The Metric Tensor

The tensor δij is a metric in the Eulerian (Euclidean) space. The

tensor

gk`(ξ, t) ≡
∑

i

J i
k J

i
` =

(

JTJ
)

k`

is the same metric tensor but in the Lagrangian coordinate system.

Since the metric tells us about the distance between two

neighbouring Lagrangian trajectories, its eigenvalues are related to

the finite-time Lyapunov exponents.
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2-D Incompressible Flow

We will now restrict ourselves to a 2-D, incompressible velocity

field v. This means that

det g = (det J)2 = 1.

Now, g is a positive-definite symmetric matrix, which implies that

it has real positive eigenvalues, Λ(ξ, t) ≥ 1 and Λ−1(ξ, t) ≤ 1, and

orthonormal eigenvectors ê(ξ, t) and ŝ(ξ, t):

gk`(ξ, t) = Λ ek e` + Λ−1 sk s`

The finite-time Lyapunov exponents are given by

λ(ξ, t) = ln Λ(ξ, t)/2 t
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Stable and Unstable Directions

At a fixed coordinate ξ:

� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �s
e e

s

The stable and unstable manifolds ê(ξ, t) and ŝ(ξ, t) converge

exponentially to their asymptotic values ê∞(ξ) and ŝ∞(ξ), whereas

Lyapunov exponents converge logarithmically.
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ŝ∞-line for the standard map with k = 1.5.
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ŝ∞-line for the standard map with k = 50.
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ψ(x, t) = Ak−1(sin kx sinπy + ε cosωt cos kx cosπy)

Oscillating convection rolls (A = k = ε = ω = 1).
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The Advection-diffusion Equation

Under the coordinate change to Lagrangian variables the diffusion

term becomes

∇ · (D∇φ) =
∂

∂xi
(Dδij ∂φ

∂xj
) =

∂

∂ξi
(Dgij ∂φ

∂ξj
).

In Lagrangian coordinates the diffusivity becomes Dgij : it is no

longer isotropic.

The advection-diffusion equation is thus just the diffusion equation,

∂φ

∂t
=

∂

∂ξi
(Dgij ∂φ

∂ξj
),

because by construction the advection term drops out.
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Diffusion along ŝ∞ and ê∞

The diffusion coefficients along the ŝ∞ and ê∞ lines are

Dss = s∞i(Dg
ij)s∞j = D exp(2λ t),

Dee = e∞i(Dg
ij)e∞j = D exp(−2λ t).

We see that Dee goes to zero exponentially quickly. Hence,

essentially all the diffusion occurs along the ŝ∞ line.
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Riemann Curvature Tensor

Differential geometry tells us if a metric describes a flat space, then

its Riemann curvature tensor must vanish in every coordinate

system.

After some tedious algebra, we find this implies that the quantity

ŝ∞ · ∇0λ(ξ, t) t+ ∇0 · ŝ∞

converges to 0 exponentially. Hence, it can be shown that the

finite-time Lyapunov exponents must have the form

λ(ξ, t) =
λ̃(ξ)

t
+
f(ξ, t)√

t
+ λ∞,

where ŝ∞ · ∇0f = 0 (the 1/
√
t factor comes from known results on

the variance of the exponents).



18'

&

$

%

Example:

Dotted: Numerical

Solid: 0.305/t+ 0.175/
√
t+ 0.117

Allows us to determine λ∞ = 0.117 rapidly and accurately.
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Standard map, 5th iteration, k = 50 (curvature κ ≡ (̂s∞ · ∇0)̂s∞).



20'

&

$

%

2.8 3 3.2 3.4 3.6 3.8 4
lambda1. · 10-6

0.0001

0.01

1

100

kappa

Standard map, 5th iteration, k = 50.
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Conclusions

• Diffusion occurs overwhelmingly along the stable direction.

• The spatial dependence of Lyapunov exponents along ŝ lines is

contained in the smooth function λ̃(ξ), which decays as 1/t.

• The notoriously slow convergence of Lyapunov exponents is

embodied in the function f(ξ, t), which is constant on ŝ lines

and decays as 1/
√
t.

• Relation between ŝ∞(ξ), κ ≡ (̂s∞ · ∇0)̂s∞, and λ̃(ξ).

• Sharp bends in the ŝ line lead to locally small finite-time

Lyapunov exponents (diffusion is hindered).

• Test on flows.


