TN classification

Train tracks

ndex formulas

Implementation 0000 Conclusions

References

A Topological Theory of Stirring

Jean-Luc Thiffeault

Department of Mathematics Imperial College London

Queen Mary University of London, 6 February 2007

Collaborators:

Matthew Finn Emmanuelle Gouillart Olivier Dauchot Toby Hall Phil Boyland Imperial College London Imperial College London / CEA Saclay CEA Saclay University of Liverpool University of Florida

TN classification

I rain tracks

ndex formulas

Implementation 0000 Conclusions I

References

Figure-eight stirring protocol

- Classic stirring method!
- Viscous (Stokes) flow;
- Essentially two-dimensional;
- Two regular islands: there are effectively 3 rods!
- We call these Ghost Rods
- 'Injection' from the top;
- Dye (material line) stretched exponentially.

Experiments by E. Gouillart and O. Dauchot (CEA Saclay). [movie 1]

Stirring with rods $0 \bullet 0$

TN classification

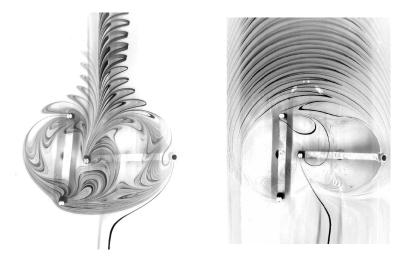
Train tracks

Index formulas

Implementation 0000 Conclusions

References

Channel flow



Experiments by E. Gouillart and O. Dauchot (CEA Saclay).

[movie 2] [movie 3]

TN classification

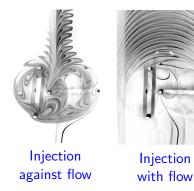
Train tracks

ndex formulas

Implementation 0000 Conclusions F

References

Channel flow: Injection



- Four-rod stirring device, with two ghost rods;
- Channel flow is upwards;
- Direction of rotation matters a lot!
- This is because it changes the injection point.
- Flow breaks symmetry.

Goals:

- Connect features to topology of rod motion: stretching rate, injection point, mixing region;
- Use topology to optimise stirring devices.

TN classification

Train tracks

Index formulas

Implementation 0000 Conclusions Ref

Mathematical description

Periodic stirring protocols in two dimensions can be described by a homeomorphism $\varphi : S \to S$, where S is a compact orientable surface.

For instance, in the previous slides,

- φ describes the mapping of fluid elements after one full period of stirring, obtained from solving the Stokes equation;
- S is the disc with holes in it, corresponding to the stirring rods.

Task: Categorise all possible φ .

 φ and ψ are isotopic if ψ can be continuously 'reached' from φ without moving the rods. Write $\varphi \simeq \psi$.

TN classification

Train tracks 00000 ndex formulas

Implementation

Conclusions R

References

Thurston–Nielsen classification theorem

 φ is isotopic to a homeomorphism $\varphi',$ where φ' is in one of the following three categories:

- 1. finite-order: for some integer k > 0, ${\varphi'}^k \simeq$ identity;
- 2. reducible: φ' leaves invariant a disjoint union of essential simple closed curves, called *reducing curves*;
- 3. pseudo-Anosov: φ' leaves invariant a pair of transverse measured singular foliations, $\mathfrak{F}^{\mathrm{u}}$ and $\mathfrak{F}^{\mathrm{s}}$, such that $\varphi'(\mathfrak{F}^{\mathrm{u}}, \mu^{\mathrm{u}}) = (\mathfrak{F}^{\mathrm{u}}, \lambda \, \mu^{\mathrm{u}})$ and $\varphi'(\mathfrak{F}^{\mathrm{s}}, \mu^{\mathrm{s}}) = (\mathfrak{F}^{\mathrm{s}}, \lambda^{-1} \mu^{\mathrm{s}})$, for dilatation $\lambda \in \mathbb{R}_{+}$, $\lambda > 1$.

The three categories characterise the isotopy class of φ .

Number 3 is the one we want for good mixing

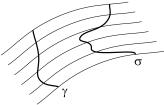
TN classification

Train tracks

Index formulas 000000 Implementation 0000 Conclusions Re

What's a foliation?

- A pseudo-Anosov (pA) homeomorphism stretches and folds a bundle of lines (leaves) after each application.
- This bundle is called the unstable foliation, \mathcal{F}^u .
- Arcs are measured by 'counting' the number of leaves crossed.
- Two arcs transverse to a foliation $\ensuremath{\mathcal{F}}$, with the same transverse measure.



• If we iterate φ , the transverse measure of these arcs increases by a factor λ .

TN classification

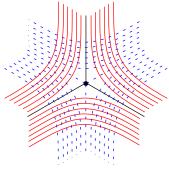
Train tracks

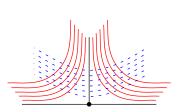
Index formulas 000000 Implementation 0000 Conclusions I

References

A singular foliation

The 'pseudo' in pseudo-Anosov refers to the fact that the foliations can have a finite number of pronged singularities.





Boundary singularity

3-pronged singularity

But do these things exist?

TN classification

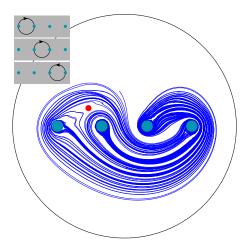
I rain tracks

Index formulas

Implementation 0000 Conclusions

References

Visualising a singular foliation



- A four-rod stirring protocol;
- Material lines trace out leaves of the unstable foliation;
- One 3-pronged singularity.
- One injection point (top): corresponds to boundary singularity;

TN classification

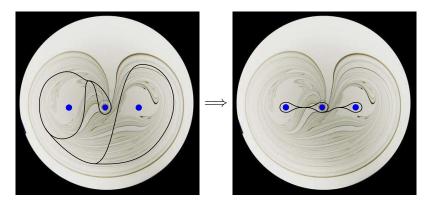
Train tracks

Index formulas

Implementation 0000 Conclusions

References

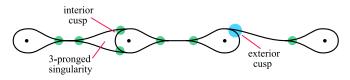
Train tracks



Thurston introduced train tracks as a way of characterising the measured foliation. The name stems from the 'cusps' that look like train switches.

What are train tracks good for?

- They tell us the possible types of measured foliations.
- Exterior cusps correspond to boundary singularities.



- These exterior cusp are the injection points.
- For three rods, only one type! ·····
- The stirring protocol gives the train track map.
- Stokes flow reproduces these features remarkably well.

TN classification

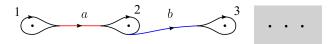
Train tracks 00●00 ndex formulas

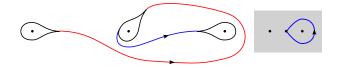
Implementation

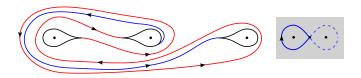
Conclusions

References

Train track map for figure-eight







Stirring	with	rods
000		

TN classification

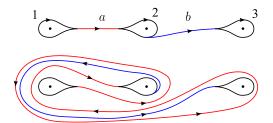
Train tracks

Index formulas

Implementation 0000 Conclusions

References

Train track map: symbolic form



 $a \mapsto a \bar{2} \bar{a} \bar{1} a b \bar{3} \bar{b} \bar{a} 1 a$, $b \mapsto \bar{2} \bar{a} \bar{1} a b$

Easy to show that this map is efficient: under repeated iteration, cancellations of the type $a\bar{a}$ or $b\bar{b}$ never occur.

There are algorithms, such as Bestvina & Handel (1992), to find efficient train tracks. (Toby Hall has an implementation in C++.)

Topological Entropy

As the TT map is iterated, the number of symbols grows exponentially, at a rate given by the topological entropy, $\log \lambda$. This is a lower bound on the minimal length of a material line caught on the rods.

Find from the TT map by Abelianising: count the number of occurences of *a* and *b*, and write as matrix:

$$\begin{pmatrix} \mathsf{a} \\ \mathsf{b} \end{pmatrix} \mapsto \begin{pmatrix} \mathsf{5} & \mathsf{2} \\ \mathsf{2} & \mathsf{1} \end{pmatrix} \begin{pmatrix} \mathsf{a} \\ \mathsf{b} \end{pmatrix}$$

The largest eigenvalue of the matrix is $\lambda = 1 + \sqrt{2} \simeq 2.41$. Hence, asymptotically, the length of the 'blob' is multiplied by 2.41 for each full stirring period.

TN classification

Train tracks 00000 Index formulas •00000 Implementation 0000 onclusions Refe

Index formulas

To classify the possible train tracks for *n* rods, we use two index formulas: these are standard and relate singularities to topological invariants, such as the Euler characteristic, χ , of a surface.

Start with a sphere, which has $\chi = 2$. Each rod decreases χ by 1 (Euler–Poincaré formula), and the outer boundary counts as a rod. Thus, for our stirring device with *n* rods, we have $\chi = 2 - (n+1) = 1 - n$.

Now for the first index theorem: the maximum number of singularities in the foliation is $-2\chi = 2(n-1)$.

n	max singularities	max bulk singularities
3	4	0
4	6	1
5	8	2

Second index formula

$$\sum_{\text{singularities}} \{2 - \# \text{prongs}\} = 2\chi(\text{sphere}) = 4$$

where #prongs is the number of prongs in each singularity (1-prong, 3-prong, etc).

Thus, each type of singularity gets a weight:

 $\begin{array}{ccc} \#prongs & \{2 - \#prongs\} \\ 1 & 1 & only case with \{2 - \#prongs\} > 0 \\ 2 & 0 & hyperbolic point (\frown) \\ 3 & -1 \\ 4 & -2 \end{array}$

Counting singularities: 3 rods

Each rod has a 1-prong singularity (\bigcirc). Hence, for 3 rods,

$$3 \cdot 1 + N = 4 \implies N = 1.$$

A 1-prong is the only way to have $\{2 - \# \text{prongs}\} > 0$, hence there must be another one-prong! This corresponds to a boundary singularity (one injection point).

Our first index theorem says that there can be no other singularities in the foliation.

Kidney-shaped mixing regions are thus ubiquitous for 3 rods.

Counting singularities: 4 rods

For 4 rods,

$$4\cdot 1 + N = 4 \quad \Longrightarrow \quad N = 0 \,.$$

Since every boundary component must have a singularity (part of the TN theorem), two cases:

- 1. A 2-prong singularity on the boundary (N = 0), or
- 2. A 1-prong on the boundary and a 3-prong in the bulk (N = 1 1 = 0).

Again, our first index formula says that we are limited to one bulk singularity.

$$\implies$$
 Two types of train tracks for $n = 4!$

TN classification

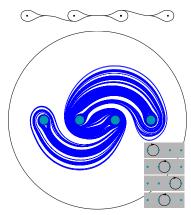
Train tracks

Index formulas

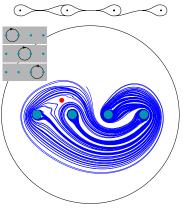
Implementation 0000 Conclusions I

References

Two types of stirring protocols for 4 rods



2 injection points Cannot be on same side



1 injection point 1 3-prong singularity

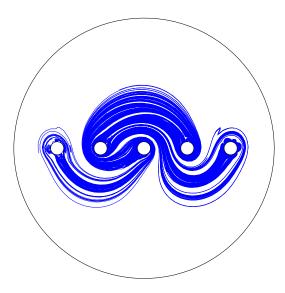
TN classification

Train tracks 00000 Index formulas

Implementation 0000 Conclusions

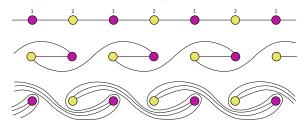
References

Five Rods, 3 Injection Points



Periodic Array of Rods

- Consider periodic lattice of rods.
- Move all the rods such that they execute $\sigma_1 \sigma_2^{-1}$ with their neighbor (Boyland et al., 2000).



- The entropy per 'switch' is log χ , where $\chi = 1 + \sqrt{2}$ is the Silver Ratio!
- This is optimal for a periodic lattice of two rods (Follows from D'Alessandro et al. (1999)).

TN classification

Train tracks

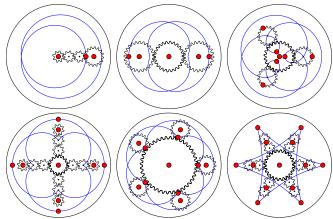
Index formulas 000000 Implementation

Conclusions I

References

Silver Mixers!

- The designs with entropy given by the silver ratio can be realised with simple gears.
- All the rods move at once: very efficient.



[movie 4]

TN classification

Train tracks

Index formulas

Implementation

Conclusions

References

Four Rods

[movie 5] [movie 6] [movie 7]

TN classification

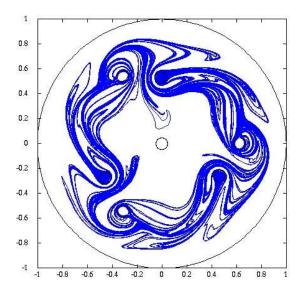
Train tracks

Index formulas

Implementation 0000 Conclusions

References

Six Rods



[movie 8]

Conclusions

- Having rods undergo 'braiding' motion guarantees a minimal amound of entropy (stretching of material lines).
- Topology also predicts injection into the mixing region, important for open flows.
- Classify all rod motions according to their topological properties.
- More generally: Periodic orbits! (ghost rods and folding)
- We have an optimal design (silver mixers), but more can be done.
- Need to also optimise other mixing measures, such as variance decay rate.
- Three dimensions! (microfluidics)

References

- Bestvina, M. & Handel, M. 1992 Train Tracks for ad Automorphisms of Free Groups. Ann. Math. 134, 1-51.
- Binder, B. J. & Cox, S. M. 2007 A Mixer Design for the Pigtail Braid. Fluid Dyn. Res. In press.
- Boyland, P. L., Aref, H. & Stremler, M. A. 2000 Topological fluid mechanics of stirring. J. Fluid Mech. 403, 277–304.
- Boyland, P. L., Stremler, M. A. & Aref, H. 2003 Topological fluid mechanics of point vortex motions. *Physica D* 175, 69–95.
- D'Alessandro, D., Dahleh, M. & Mezić, I. 1999 Control of mixing in fluid flow: A maximum entropy approach. IEEE Transactions on Automatic Control 44, 1852–1863.
- Gouillart, E., Finn, M. D. & Thiffeault, J.-L. 2006 Topological Mixing with Ghost Rods. Phys. Rev. E 73, 036311. arXiv:nlin/0510075.
- Kobayashi, T. & Umeda, S. 2006 Realizing pseudo-Anosov egg beaters with simple mecanisms Preprint.

Moussafir, J.-O. 2006 On the Entropy of Braids. In submission, arXiv:math.DS/0603355.

- Thiffeault, J.-L. & Finn, M. D. 2006 Topology, Braids, and Mixing in Fluids. Phil. Trans. R. Soc. Lond. A 364, 3251–3266. arXiv:nlin/0603003.
- Thurston, W. P. 1988 On the geometry and dynamics of diffeomorphisms of surfaces. Bull. Am. Math. Soc. 19, 417–431.