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Introduction

Shear flow:

v(x, z, t) = U(z, t) + v′(x, z, t), where v′ = 0.

Turbulent convection v′(x, z, t) −→ U(z, t).

• Rayleigh-Bénard Convection

• Tokamak Edge

Sugama and Horton (1995): low-order model

for L–H transitions. Uses turbulence theory to

truncate the energy transfer terms between the

two energies 1
2

〈

v′2
〉

and
〈

U2
〉

.
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Motivation

Original aim:

See if such models could be justified from the

PDE’s by studying truncations.

But how do we choose the modes

to keep in the truncations?

−→ Energy-conserving approximations
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Equations of the Rayleigh–Bénard System

Incompressible fluid heated from below and

subject to gravity:

ρ

(

∂

∂t
+ v · ∇

)

v = −∇p + νρ∇2v − ρgẑ,
(

∂

∂t
+ v · ∇

)

Θ = κ∇2Θ

Stream function (2–D):

v = (−∂zχ, ∂xχ) = ∇χ × ŷ

Temperature deviation from conduction state:

Θ = Θupper +

(

1 −
z

πd

)

∆T + T

Boussinesq approximation:

ρ → ρ (1 − α [Θ − Θavg])
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Rescale variables:

[x, z] = d, [t] =
√

d/gα∆T ,

[T ] = ∆T , [χ] =
√

gα∆Td3,

∂∇2χ

∂t
+

{

χ , ∇2χ
}

= ν̃ ∇4χ +
∂T

∂x
,

∂T

∂t
+ {χ , T} = κ̃∇2T +

∂χ

∂x
.

Poisson bracket:

{a , b} ≡
∂a

∂x

∂b

∂z
−

∂b

∂x

∂a

∂z
.

σ ≡ ν/κ = Prandtl number,

R ≡
gα∆Td3

κν
= Rayleigh number,
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Boundary Conditions

Boundary Conditions are periodic in x,

with period 2πLd, stress-free at walls:

χ = ∇2χ = ∂xχ = T = 0, for z = 0 or πd.

L is the aspect ratio. k = 1/L.
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Conserved Quantities

In the dissipationless limit (ν̃ = κ̃ = 0):

1

2
∂t

〈

(∇χ)2
〉

=
〈

T∂xχ
〉

,

∂t

〈

zT
〉

=
〈

T∂xχ
〉

.

We obtain a conservation law:

∂t

[

1

2

〈

(∇χ)2
〉

−
〈

zT
〉

]

= 0,

or

∂t [K + U ] = ∂tE = 0.

Other invariants:

1
2

[〈

(∇χ)2
〉

−
〈

T2
〉]

,
〈

T ∇2χ
〉

, and
〈

T
〉

.
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Expansion into Normal Modes

χ(x, z, t) =
∑

m,n

χmn(t) ei(mz+nkx),

T (x, z, t) =
∑

m,n
Tmn(t) ei(mz+nkx).

The boundary and reality conditions lead to:

χr
mn = −χr

m,−n , χi
mn = χi

m,−n ,

χr
m0 = 0, χr

0n = χi
0n = 0,

and similarly for the Tmn’s.

This expansion is more general than traditional
ones:

• It includes shear flow modes for the stream
function (of the form χi

m0 eimz).

• It allows for variable phase of the modes.
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After inserting the mode expansions into the

Boussinesq equations, we obtain a set of cou-

pled nonlinear ODE’s:

ρmn
d

dt
χmn = −ν̃ρ2

mn
χmn − ik nTmn

− k
∑

m′+m′′=m
n′+n′′=n

(m′n′′ − m′′n′)ρm′′n′′ χm′n′ χm′′n′′ ,

d

dt
Tmn = −κ̃ρmnTmn + i k n χmn

− k
∑

m′+m′′=m
n′+n′′=n

(m′n′′ − m′′n′)χ
m′n′ Tm′′n′′ ,

with ρmn = m2 + k2n2.
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Truncations

∞ modes −→ Finite set of modes

Set of pairs (m, n) corresponding to the inclu-

sion of:

χmn , χ
m,−n , χ

−m,n , and χ
−m,−n ,

related by the boundary conditions.

Include the corresponding Tmn.

M ≡ max{m}, N ≡ max{n}

In general, these truncations will not preserve

all the invariants of the full PDE’s.

11



Expansion of the Energies

The expansions for the kinetic and potential

energy are:

K =
1

2

∑

m,n
ρmn |χmn|

2

U = −2
∑

p>0

(−1)p

p
T i

p0 .

Note that U depends only on the T i
p0 modes.

K̇ =
1

2

∑

m,n
ρmn

(

χ∗
mn

χ̇mn + χmnχ̇∗
mn

)

,

−→ χ∗
mn

χ
m′n′χm′′n′′
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Dissipationless: ν = κ = 0

K̇ = −4k
∑

m,n>0

n Imχmn T ∗
mn ,

U̇ = −4k
∑

p,m,n>0

(−1)pn Imχmn T ∗
m−p,n

− 4k
∑

p′,m,n>0

(−1)p′n Imχmn T ∗
m+p′,n .

Need:

T ∗
mn +

∑

p>0

(−1)p sgn(m − p)T ∗
|m−p|,n

+
∑

p′>0

(−1)p′ T ∗
m+p′,n = 0.

for energy conservation.
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We separate the first sum in two parts to get

rid of the sgn function and of the absolute

value:

T ∗
mn +

m−1
∑

p=1

(−1)p T ∗
m−p,n −

M+m
∑

p=m+1

(−1)p T ∗
p−m,n

+
M−m

∑

p′=1

(−1)p′ T ∗
m+p′,n ,

and relabel:

T ∗
mn +

m−1
∑

s=1

(−1)m−s T ∗
sn −

M
∑

r=1

(−1)m+r T ∗
rn

+
M
∑

s=m+1

(−1)s−m T ∗
sn ,

=
M
∑

s=1

(−1)m−s T ∗
sn −

M
∑

r=1

(−1)m+r T ∗
rn

= 0.
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For a given set of modes, include all modes of

the form Tp0, p = 1, . . .2M :

N

M

N

M

The effect of adding these modes is to preserve

all of the invariants of the full PDE’s.
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Boundedness of Solutions

Non-negative quantity:

Q ≡ 2
∑

m,n>0

ρmn |χmn|
2 +

∑

m>0

ρm0 |χm0|
2

+ 2
∑

m,n>0

|Tmn|
2 +

∑

m>0

(

T i
m0 −

2

m

)2

,

d

dt
Q ≤ −min{2ν̃, κ̃}Q + 4κ̃M0 ,

M0 ≡ number of Tm0 modes.

For Q > 4κ̃M0/min{2ν̃, κ̃}, d
dtQ < 0.

−→ Q is bounded.

This is not true of arbitrary truncations.
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Heat Flux

Total heat flux through a horizontal slice of

fluid:

qz(z) = qcvz + qcdz

= vzT + ẑ · (−∇T ) .

In a steady-state situation, should be indepen-

dent of z.

For energy-conserving truncations:

qz(z) = 〈 qz 〉 − 2
∑

m>0

Ṫ i
m0

m
cosmz ,

so that qz(z) = 〈 qz 〉 in a steady state.
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Particular Truncations

The Lorenz model is energy-conserving:

χr
11 , T i

11 , T i
20 .

It does not allow for shear flow or variable

phase.

The 6–mode Howard and Krishnamurti model

is used to study generation of shear flow (no

variable phase):

χi
10 , χr

11 , χi
21 , T i

11 , T r
21 , T i

20 .

It is not energy-conserving. It lacks the T i
40

mode.
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Numerical Demonstration

Integration of the 7–ODE (a) and 6–ODE (b)

models in the dissipationless limit:

Energy is definitely not conserved by the 6–

ODE model.
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Nu ≡
Heat transported by conduction and convection

Heat conduction of fluid at rest

Solid Dots: Steady-state

Triangles: Quasi-periodic

Asterisks: Chaotic
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Solid Dots: Steady-state

Triangles: Quasi-periodic

Asterisks: Chaotic

20



Solid: 7–ODE, energy-conserving

Dashed: 6–ODE

Dotted: experiment (slope of 5.05)
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Transition to Shear Flow

σ = 1, r = 3.4, k = 1.2

For t > 25, steady-state tilted-cell convection.
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Conclusions

• Used expansions that include shear flow

and breaking of point-symmetry.

• General method for generating

energy-conserving truncations.

Advantages of energy-conserving approxima-

tions:

1. The cascade of energy through the iner-

tial range to the dissipation scale is mod-

eled without extraneous terms in the en-

ergy equations.

2. Proper description of the heat flow in the

steady-state limit, even with dissipation.

3. Boundedness of solutions.
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