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Introduction

Shear flow:
v(z,z,t) = U(z,t) +Vv/(z,2,t), where v/ =0.
Turbulent convection v/(z, z,t) — U(z,t).

e Rayleigh-Bénard Convection

e [Tokamak Edge

Sugama and Horton (1995): low-order model
for L—H transitions. Uses turbulence theory to
truncate the energy transfer terms between the

two energies %<?> and <U2>.



Motivation

Original aim:

See if such models could be justified from the
PDE’'s by studying truncations.

But how do we choose the modes
to keep in the truncations?

— Energy-conserving approximations
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Equations of the Rayleigh—Bénard System

Incompressible fluid heated from below and
subject to gravity:

0 .
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Stream function (2-D):

Temperature deviation from conduction state:
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Boussinesqg approximation:
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Rescale variables:

[z,2] = d, [t] = \/d/gaAT,
[T] = AT, [X] = /gaATdS3,
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Poisson bracket:
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Boundary Conditions

Boundary Conditions are periodic in =z,
with period 27 Ld, stress-free at walls:

X=VX=8,X=T=0, forz=0 or «d.

L is the aspect ratio. k=1/L.
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Conserved Quantities

In the dissipationless limit (7 =k = 0):
I -
5at<(v><) >_ (TaX),

(1) = (T03%).

We obtain a conservation law:
1 5 .
o [L {02 ) - (1)] =0,

8 [K + U] = 8,E = 0.

or

Other invariants:

S((v02) — (12)], (TV2X), and (T').




Expansion into Normal Modes

X(x,z,t) = Z an(t)ei(mz—i_nkm),
m,n

T(x,z,t) = Y Tmn(t)elmztnke),
m,n

The boundary and reality conditions lead to:

ann — _er,—n ) X%n — X%n,—n )
r —_ r —_ -

and similarly for the T,,n'S.

This expansion is more general than traditional
ones:

e It includes shear flow ques_ for the stream
function (of the form X! ,e'?).

e It allows for variable phase of the modes.
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After inserting the mode expansions into the
Boussinesqg equations, we obtain a set of cou-
pled nonlinear ODE's:

Pm %an = z/p%mX tknTmn
— k mn —m”n/) 11 X //X "ol
Pm/'n m''n
m!4m! =m
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With pmn = m?2 + k2n2.
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Truncations

oo modes — Finite set of modes

Set of pairs (m,n) corresponding to the inclu-
sion of:

an ) Xm,—n ’ X—m,n ’ and X—m,—n )

related by the boundary conditions.

Include the corresponding 1.

M = max{m}, N = max{n}

In general, these truncations will not preserve
all the invariants of the full PDE'’s.
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Expansion of the Energies

The expansions for the Kinetic and potential
energy are:

1
K = _men|xmn|2
2m,n
1) .
v = 2y &Y PO -
p>0 p

Note that U depends only on the ngo modes.

2 m,n
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Dissipationless: v =k =0

mn
m,n>0

U = —4k > (=1)PnImXp, Ty
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p/>m7n>0
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/
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for energy conservation.
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We separate the first sum in two parts to get
rid of the sgn function and of the absolute
value:
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For a given set of modes, include all modes of
the form T,

p=1,...2M:

T he effect of adding these modes is to preserve

all of the invariants of the full PDE’s.
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Boundedness of Solutions

Non-negative quantity:

Q = 2 Z pmn|xmn|2‘|‘ Z me|XmO|2

m,n>0 m>0
2 ' 22
‘|'2 Z |Tmn| ‘|‘ Z <T,,?no——) )
m,n>0 m>0 m
d

~Q < —min{27,7R}Q + 45 My |

Mgy = number of T,,0 modes.

For Q > 4kMg/ min{20, k}, %Q < 0.
— () IS bounded.

This is not true of arbitrary truncations.
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Heat Flux

Total heat flux through a horizontal slice of
fluid:

7:(2) ¢’ + ¢4

v:T + 2-(=VT) .

In a steady-state situation, should be indepen-
dent of z.

For energy-conserving truncations:

Ti
G(z) =(qz)—2 Z “m0 cosmz ,
m>0 m

so that gz(z) = (gz ) in a steady state.
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Particular Truncations

The Lorenz model is energy-conserving:
r ) 7
Xll ) Tll ) TQO y

It does not allow for shear flow or variable
phase.

The 6-mode Howard and Krishnamurti model
is used to study generation of shear flow (no
variable phase):

i r ; ; r ;
X190, X11, Xo1, T11, 151, Thg-

It is not energy-conserving. It lacks the T},
mode.
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Numerical Demonstration

Integration of the 7—ODE (a) and 6—ODE (b)
models in the dissipationless limit:
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Energy is definitely not conserved by the 6—
ODE model.
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__ Heat transported by conduction and convection

Nu =
Heat conduction of fluid at rest

o |
6—0DE Model I

r
Solid Dots: Steady-state
Triangles: Quasi-periodic
Asterisks: Chaotic
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. 7—0DE Model
L o =10 k =12

Solid Dots: Steady-state

Triangles: Quasi-periodic

Asterisks: Chaotic
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Solid: 7—ODE, energy-conserving
Dashed: 6—ODE
Dotted: experiment (slope of 5.05)
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Conclusions

e Used expansions that include shear flow
and breaking of point-symmetry.

e General method for generating
energy-conserving truncations.

Advantages of energy-conserving approxima-
tions:

1. The cascade of energy through the iner-
tial range to the dissipation scale is mod-
eled without extraneous terms in the en-
ergy equations.

2. Proper description of the heat flow in the
steady-state limit, even with dissipation.

3. Boundedness of solutions.
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