Coding of loops

LCS 00000000 Conclusions

References

Braids of entangled particle trajectories

Jean-Luc Thiffeault¹ Michael Allshouse²

¹Department of Mathematics University of Wisconsin – Madison

²Department of Mechanical Engineering MIT

Workshop on Braids and Their Applications Centro di Ricerca Matematica Ennio De Giorgi, Pisa, Italy 22 June 2011 Growth of loops Coding o

oding of loops

LCS 00000000 Conclusions

References

Sparse trajectories and material loops

How do we efficiently detect trajectories that 'bunch' together? [movie 1] Coding of loops

LCS 00000000

Mathematical background: Punctured disks

Low-dimensional topologists have long studied transformations of surfaces such as the punctured disk:

The central object of study is the homeomorphism: a continuous, invertible transformation whose inverse is also continuous.

For instance, this is a model of a two-dimensional vat of viscous fluid with stirring rods.

Coding of loops DODODODODODOC LCS 00000000 Conclusions

References

Punctured disks in experiments

The transformation in this case is given by the solution of a fluid equation over one period of rod motion.

[P. L. Boyland, H. Aref, and M. A. Stremler, J. Fluid Mech. 403, 277 (2000)] [movie 2] [movie 3]

Growth of curves on a disk

On a disk with 3 punctures (rods), we can also look at the growth of curves:

We use the braid generator notation: σ_i means the clockwise interchange of the *i*th and (i + 1)th rod. (Inverses are counterclockwise.)

The motion above is denoted $\sigma_1 \sigma_2^{-1}$.

Coding of loops

LCS 00000000 Conclusions

References

Growth of curves on a disk (2)

The rate of growth $h = \log \lambda$ is called the topological entropy.

But how do we find the rate of growth of curves for motions on the disk?

For 3 punctures it's easy: the entropy for $\sigma_1 \sigma_2^{-1}$ is $h = \log \varphi^2$, where φ is the Golden Ratio!

For more punctures, use Moussafir iterative technique (2006).

[Thiffeault, *Phys. Rev. Lett.* (2005); *Chaos* (2010); Gouillart et al., *Phys. Rev. E* (2006) 'ghost rods']

Coding of loops

LCS 00000000 Conclusions

References

Iterating a loop

It is well-known that the entropy can be obtained by applying the motion of the punctures to a closed curve (loop) repeatedly, and measuring the growth of the length of the loop (Bowen, 1978).

The problem is twofold:

- 1. Need to keep track of the loop, since its length is growing exponentially;
- 2. Need a simple way of transforming the loop according to the motion of the punctures.

However, simple closed curves are easy objects to manipulate in 2D. Since they cannot self-intersect, we can describe them topologically with very few numbers.

Coding of loops

LCS 00000000 Conclusions

References

Solution to problem 1: Loop coordinates

What saves us is that a closed loop can be uniquely reconstructed from the number of intersections with a set of curves. For instance, the Dynnikov coordinates involve intersections with vertical lines:

Coding of loops

LCS 0000000 Conclusions

References

Crossing numbers

Label the crossing numbers:

Coding of loops

LCS

Conclusions

References

Dynnikov coordinates

Now take the difference of crossing numbers:

$$\begin{aligned} & a_i = \frac{1}{2} \left(\mu_{2i} - \mu_{2i-1} \right), \\ & b_i = \frac{1}{2} \left(\nu_i - \nu_{i+1} \right) \end{aligned}$$

for i = 1, ..., n - 2.

The vector of length (2n - 4),

$$\mathbf{u}=(a_1,\ldots,a_{n-2},b_1,\ldots,b_{n-2})$$

is called the Dynnikov coordinates of a loop.

There is a one-to-one correspondence between closed loops and these coordinates: you can't do it with fewer than 2n - 4 numbers.

Coding of loops

LCS 00000000 Conclusions

References

Intersection number

A useful formula gives the minimum intersection number with the 'horizontal axis':

$$L(\mathbf{u}) = |a_1| + |a_{n-2}| + \sum_{i=1}^{n-3} |a_{i+1} - a_i| + \sum_{i=0}^{n-1} |b_i|,$$

For example, the loop on the left has L = 12.

The crossing number grows proportionally to the the length.

Coding of loops

LCS 00000000 Conclusions

References

Solution to problem 2: Action on coordinates

Moving the punctures according to a braid generator changes some crossing numbers:

There is an explicit formula for the change in the coordinates!

Coding of loops

LCS 00000000 Conclusions

References

Action on loop coordinates

The update rules for σ_i acting on a loop with coordinates (\mathbf{a}, \mathbf{b}) can be written

$$\begin{aligned} a_{i-1}' &= a_{i-1} - b_{i-1}^+ - (b_i^+ + c_{i-1})^+ ,\\ b_{i-1}' &= b_i + c_{i-1}^- ,\\ a_i' &= a_i - b_i^- - (b_{i-1}^- - c_{i-1})^- ,\\ b_i' &= b_{i-1} - c_{i-1}^- , \end{aligned}$$

where

$$f^+ := \max(f, 0), \qquad f^- := \min(f, 0).$$

 $c_{i-1} := a_{i-1} - a_i - b_i^+ + b_{i-1}^-.$

This is called a piecewise-linear action. Easy to code up (see for example Thiffeault (2010)).

Growth of L

For a specific rod motion, say as given by the braid $\sigma_3^{-1}\sigma_2^{-1}\sigma_3^{-1}\sigma_2\sigma_1$, we can easily see the exponential growth of *L* and thus measure the entropy:

m is the number of times the braid acted on the initial loop.

Coding of loops

LCS 00000000 Conclusions

References

Oceanic float trajectories

Coding of loops

LCS 00000000 Conclusions

References

Oceanic floats: Data analysis

What can we measure?

- Single-particle dispersion (not a good use of all data)
- Correlation functions (what do they mean?)
- Lyapunov exponents (some luck needed!)

Another possibility:

Compute the σ_i for the float trajectories (convert to a sequence of symbols), then look at how loops grow. Obtain a topological entropy for the motion (similar to Lyapunov exponent).

Coding of loops

LCS 00000000 Conclusions

References

Oceanic floats: Entropy

10 floats from Davis' Labrador sea data:

Floats have an entanglement time of about 50 days — timescale for horizontal stirring.

Source: WOCE subsurface float data assembly center (2004)

Coding of loops

LCS •0000000 Conclusions

References

Lagrangian Coherent Structures

- There is a lot more information in the braid than just entropy;
- For instance: imagine there is an isolated region in the flow that does not interact with the rest, bounded by Lagrangian coherent structures (LCS);
- Identify LCS and invariant regions from particle trajectory data by searching for curves that grow slowly or not at all.
- For now: regions are not 'leaky.'

 of loops
 Coding of loops
 LCS
 Conclusions

 00000000000
 000000000
 00
 00

Sample system: Modified Duffing oscillator

+ rotation to further hide two regions. $\alpha = .1$, $\gamma = .14$, $\delta = .08$, $\omega = 1$.

Coding of loops oooooooooooo LCS 00000000 Conclusions

References

Growth of a vast number of loops

Left: semilog plot; Right: linear plot of slow-growing loops.

Clearly two types of loops!

 Growth of loops
 Coding of loops
 LCS
 Conclusions
 Referen

 00000
 0000000000
 000000000
 00

What do the slowest-growing loops look like?

[(c) appears because the coordinates also encode 'multiloops.']

Coding of loops

LCS 00000000 Conclusions

References

Computational complexity

Here's the bad news:

- There are an infinite number of loops to consider.
- But we don't really expect hyper-convoluted initial loops (nor do we care so much about those).
- Even if we limit ourselves to loops with Dynnikov coordinates between -1 and 1, this is still 3²ⁿ⁻⁴ loops.
- This is too many...can only treat about 10–11 trajectories using this direct method.

Coding of loops

LCS 000000000 Conclusions

References

An improved method: Pair-loops

The biggest problem is that we only look at whether a loop grows or not. But there is a lot more information to be found in how a loop entangles the punctures as it evolves.

Consider loops that enclose two punctures at once. More involved analysis, but scales *much* better with *n*.

Improvement

Run times in seconds:

# of trajectories	6	7	8	9	10	11	20
direct method	0.46	0.70	6.0	53	462	3445	N/A
pair-loop method	9.5	11.6	12.3	13	15	20	128

Bottleneck for the pair-loop method is finding the non-growing loops. (Should scale as n^2 for large enough n.)

The downside is that the pair-loop method is much more complicated. But in the end it accomplishes the same thing.

 Coding of loops
 LCS
 Conclusions

 0000000000
 0000000
 00

A physical example: Rod stirring device

[movie 4]

- Having rods undergo 'braiding' motion guarantees a minimal amount of entropy (stretching of material lines);
 - This idea can also be used on fluid particles to estimate entropy;
 - Need a way to compute entropy fast: loop coordinates;
 - There is a lot more information in this braid: extract it! (Lagrangian coherent structures);
 - Is this useful? We need a good physical problem to try it on!
- See Thiffeault (2005, 2010) and preprint by Allshouse & Thiffeault (arXiv:1106.2231).

Growth of loops 00000	Coding of loops	LCS 00000000	Conclusions ⊙●	References

This work was supported by the Division of Mathematical Sciences of the US National Science Foundation, under grant DMS-0806821.

References

- Bestvina, M. & Handel, M. 1995 Train-Tracks for Surface Homeomorphisms. Topology 34, 109-140.
- Binder, B. J. & Cox, S. M. 2008 A Mixer Design for the Pigtail Braid. Fluid Dyn. Res. 49, 34-44.
- Bowen, R. 1978 Entropy and the fundamental group. In Structure of Attractors, volume 668 of Lecture Notes in Math., pp. 21–29. New York: Springer.
- Boyland, P. L. 1994 Topological methods in surface dynamics. Topology Appl. 58, 223-298.
- Boyland, P. L., Aref, H. & Stremler, M. A. 2000 Topological fluid mechanics of stirring. J. Fluid Mech. 403, 277–304.
- Boyland, P. L., Stremler, M. A. & Aref, H. 2003 Topological fluid mechanics of point vortex motions. Physica D 175, 69–95.
- Dynnikov, I. A. 2002 On a Yang-Baxter map and the Dehornoy ordering. Russian Math. Surveys 57, 592-594.
- Gouillart, E., Finn, M. D. & Thiffeault, J.-L. 2006 Topological Mixing with Ghost Rods. Phys. Rev. E 73, 036311.
- Hall, T. & Yurttaş, S. Ö. 2009 On the Topological Entropy of Families of Braids. Topology Appl. 156, 1554–1564.
- Kolev, B. 1989 Entropie topologique et représentation de Burau. C. R. Acad. Sci. Sér. I 309, 835–838. English translation at arXiv:math.DS/0304105.
- Moussafir, J.-O. 2006 On the Entropy of Braids. Func. Anal. and Other Math. 1, 43-54. arXiv:math.DS/0603355.
- Thiffeault, J.-L. 2005 Measuring Topological Chaos. Phys. Rev. Lett. 94, 084502.
- Thiffeault, J.-L. 2010 Braids of entangled particle trajectories. Chaos, 20, 017516.
- Thiffeault, J.-L. & Finn, M. D. 2006 Topology, Braids, and Mixing in Fluids. Phil. Trans. R. Soc. Lond. A 364, 3251–3266.
- Thurston, W. P. 1988 On the geometry and dynamics of diffeomorphisms of surfaces. Bull. Am. Math. Soc. 19, 417–431.