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Chlamydomonas reinhardtii

play movie

[Guasto, J. S., Johnson, K. A., & Gollub, J. P. (2010). Phys. Rev. Lett. 105, 168102]
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Probability density of displacements

Non-Gaussian PDF with ‘exponential’ tails:

[Leptos, K. C., Guasto, J. S., Gollub, J. P., Pesci, A. I., & Goldstein, R. E. (2009).

Phys. Rev. Lett. 103, 198103]
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Probability density of displacements

Leptos et al. (2009) claim a reasonable fit of their PDF with the form

P∆t(∆x) =
1− f√
2π δg

e−(∆x)2/2δ2
g +

f

2δe
e−|∆x |/δe

They observe the scalings δg ∼ Ag (∆t)1/2 and δe ∼ Ae(∆t)1/2, where Ag

and Ae depend on φ.

They call this a diffusive scaling, since ∆x ∼ (∆t)1/2. Their point is that
this is strange, since the distribution is not Gaussian.

Commonly observed in diffusive processes that are a combination of
trapped and hopping dynamics (Wang et al., 2012).
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Modeling: the interaction sphere

V
swimmer

interaction sphere

Model for effective diffusivity:

[Thiffeault, J.-L. & Childress,

S. (2010). Phys. Lett. A, 374,

3487–3490]

[Lin, Z., Thiffeault, J.-L., &

Childress, S. (2011). J. Fluid

Mech. 669, 167–177]

Expected number of ‘dings’ (close interactions) after time t:

〈Mt〉 = nVswept(R, L) (t/τ)

n is the number density of swimmers, Vswept is the volume swept by the
sphere of radius R moving a distance L, and τ is the time between turns.
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Parameters in the Leptos et al experiment

• Velocity U ∼ 100µm/s;

• Volume fraction is less than 2.2%;

• Organisms of radius 5µm;

• Number density n . 4.2× 10−5 µm−3.

• Maximum observation time in PDFs is t ∼ 0.3 s;

• A typical swimmer moves by a distance Ut ∼ 30µm.
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Close encounters in the Leptos et al experiment

Combining this, we find the expected number of ‘dings’ after time t:

〈Mt〉 . 1.6

for the longest observation time, and interaction disk R = 20µm.

Conclude: a typical fluid particle is only strongly affected by about one
swimmer during the experiment.

The only displacements that a particle feels ‘often’ are the very small ones
due to all the distant swimmers.

We thus expect the displacement PDF to have a central Gaussian core
(since the central limit theorem will apply for the small displacements),
but strongly non-Gaussian tails.
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Probability of displacements

Xt is the displacement of a particle after a time t.

P{Xt ∈ [x , x + dx ]} =
∞∑

m=0

P{Xt ∈ [x , x + dx ] , Mt = m}

=
∞∑

m=0

P{Xt ∈ [x , x + dx ] |Mt = m}P{Mt = m}

=
∞∑

m=0

P{Xm ∈ [x , x + dx ]}P{Mt = m}

The number of interactions obeys a Poisson distribution:

P{Mt = m} ' 1

m!
〈Mt〉m e−〈Mt〉
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Small number of interactions

Define the probability density

ρXm(x) dx := P{Xm ∈ [x , x + dx ]}.

Normally we would now go to the large m limit and use large-deviation
theory. But this doesn’t hold here. Instead, keep only m ≤ 1,

ρXt (x) =
∞∑

m=0

ρXm(x)P{Mt = m}

' P{Mt = 0} ρX0(x) + P{Mt = 1} ρX1(x) + . . .

i.e., most fluid particles feel 0 or 1 encounter with swimmers.

ρX0(x) is due to thermal noise (or the combined effect of distant
swimmers), so is Gaussian.

ρX1(x) is the displacement probability after one close interaction with a
swimmer, which has strongly non-Gaussian tails.
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The combined PDF for stresslet swimmers
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dashed: Leptos et al. (2009); blue: model; red: simulations.

(Because of normalization, there are no adjustable parameters.)
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Conclusions

• Times in Leptos et al. (2009) are so short that the tails are not
determined by asymptotic laws, such as the central limit theorem or
large-deviation theory.

• Retaining only 0 and 1 close interactions gives a linear combination of
a Gaussian and a distribition with non-Gaussian tails, as observed by
Leptos et al. (2009).

• The Gaussian core arises because of the net effect of the distant
swimmers, far from the test particle.

• The small discrepancy with experiments is probably due to noise
(smear center a bit).

• Not yet sure if this model recovers the diffusive scaling, but there is a
well-defined effective diffusivity.

• See Bruno Eckhardt’s talk tomorrow for more!
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