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Munk’s Idea

Though it had been mentioned earlier, the first to seriously
consider the role of ocean biomixing was Walter Munk (1966):

Abyssal recipes
WaLter H. Munk*
(Received 31 January 1966)

Abstract—Vertical distributions in the interior Pacific (excluding tbe top and bottom kilometer)
are not inconsistent with a simple model involving a constant upward vertical velozity w1-2cmday-!
and eddy diffusivity x ~ [:3 em®sec™l. Thus temperature and salinity can be fitted by exponentiai-
like solutions to [ - d?/ds® — w d{d=] T, § = 0, with «/w & 1 km the appropriate * scale height.”
For Carbon 14 a decay term must be included, [ ]33C = w14C; a fitting of the solution to the ob-
served HC distribution yields x/w? ~ 200 years for the appropriate '* scale time,” and permits w and

“... | have attempted, without much success, to interpret [the
eddy diffusivity] from a variety of viewpoints: from mixing along
the ocean boundaries, from thermodynamic and biological
processes, and from internal tides.”

N

23



Biomixing Dilute theory Simulations Squirmers Conclusions References
oe 0000 00000 0000000 [e]e)

In situ experiments
Katija & Dabiri (2009) looked at jellyfish:

[movie 1] (Palau’s Jellyfish Lake.)


http://www.math.wisc.edu/~jeanluc/movies/nature08207-s4.mpg
http://en.wikipedia.org/wiki/Jellyfish_Lake
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Displacement by a moving body

86 Mr. J. Clerk-Maxwell on [Mar, 10,

fevaN

Fro. 2.
Paths of particles of the fluid when & cylinder moves through it.

Fio. L
Tinid flowing past o fsed eglinder.

Maxwell (1869); Darwin (1953); Eames et al. (1994)



Biomixing Dilute theory Simulations

(e]e]

[e] lee) 00000

Squirmers Conclusions
0000000 [e]e)

A sequence of kicks

Inspired by Einstein's theory of
diffusion (Einstein, 1956): a test par-
ticle initially at x(0) = 0 under-
goes N encounters with an axially-
symmetric swimming body:

N

x(t) = Ar(ak, bi)

k=1

A (a, b) is the displacement, ag,
by are impact parameters, and ¥
is a direction vector.

target particle

L ——

A
a.

swimmer -

@ —

L

—>»>

(a > 0, but b can have
either sign.)
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Effective diffusivity

Putting this together,

(Ix[*) =

2Unt

/A2 a,b)dadb = 4xt, 2D

21 Unt
(Ix]) = ”U” /Af(a,b)adadb:%t, 3D

which defines the effective diffusivity «.

If the number density is low (nL9 < 1), then encounters are rare

and we can use this formula for a collection of particles.
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Inviscid cylinders and spheres (treadmill swimmer)

K= gun/a%i(a, b)d(loga)d(b/L) 3D

Notice A/ (a, b) is nonzero for 0 < b < L; otherwise independent
of band L = have to cross point of closest approach.
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Simulations
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Numerical simulation

Validate theory using simple simple simulations;

Large periodic box;

Ngwim swimmers (cylinders of radius 1), initially at random
positions, swimming in random direction with constant speed
Uu=1;

Target particle initially at origin advected by the swimmers;
Since dilute, superimpose velocities;

Integrate for some time, compute |x(t)|?, repeat for a large

number N, of realizations, and average.
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A ‘gas’ of swimmers
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[movie 2] 100 cylinders, box size = 1000
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How well does the dilute theory work?
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Cloud of particles

t=10 =630 t=1255

t=1880 t=2505 t=3125

[movie 3] (30 cylinders)
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Cloud dispersion proceeds by steps

12

10} N =30 J
n =7.5e-04

0 1000 2000 3000 4000 5000
t
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Squirmers

Considerable literature on transport due to microorganisms: Wu &
Libchaber (2000); Hernandez-Ortiz et al. (2006); Saintillian & Shelley (2007); Ishikawa
& Pedley (2007); Underhill et al. (2008); Ishikawa (2009); Leptos et al. (2009)

Lighthill (1952), Blake (1971), and more recently Ishikawa et al.
(2006) have considered squirmers:

e Sphere in Stokes flow;

e Steady velocity
specified at surface,
to mimic cilia;

e Steady swimming
condition imposed

(no net force on
ﬂUId) (Drescher et al., 2009)  (Ishikawa et al., 2006)
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Typical squirmer

3D axisymmetric streamfunction for a
typical squirmer, in cylindrical coordi-
nates (p, z):

1 3 o (1
1 g |
b=—ar +2r3p =X (r2 >
where r = \/p? + 22, U = 1, radius of

squirmer = 1.

B is the amplitude of the stresslet (dis-
tinguises pushers/pullers).

We will use 5 = 5 for most of the re-
mainder.

&
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Particle motion for squirmer

A particle near the squirmer’s swimming
axis initially (blue) moves towards the
squirmer.

After the squirmer has passed the particle
follows in the squirmer’s wake.

(The squirmer moves from bottom to
top.)

[movie 4]
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Squirmer displacements a>A?(a, b)
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Squirmers: Transport
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Squirmers: Trajectories

The two peaks in the displacement plot come from ‘incomplete’
trajectories:

T

b/A=0 b/A = 0.5 b/A =1

For long path length, the effective diffusivity is independent of the
swimming path length, and yet the dominant contribution arises
from the finiteness of the path (uncorrelated turning directions).
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Non-Gaussian PDFs of displacement

10° 10 100 6 -4 -2 0
At Az//{(Ax)?)
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e Variance exhibits similar short-time anomalous scaling as in

Wu & Libchaber (2000);

e PDF qualitatively matches experiments of Leptos et al.
(2009). In our case, exponential tails are due to sticking at
the stagnation points on the squirmer’s body.

19/23



Biomixing Dilute theory Simulations Squirmers Conclusions References

(1)

Conclusions

e Simple dilute model works well for a range of swimmers;

e Slip surfaces have an effective diffusivity that is independent
of path length, for long path length;

e No-slip flows dominated by sticking and have a log
dependence on path length;
Future work:
e Wake models and turbulence;
e PDF of scalar concentration;
e Buoyancy effects for the ocean case;
e Higher densities;

e Schooling: longer length scale?
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