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Munk’s Idea
Though it had been mentioned earlier, the first to seriously
consider the role of ocean biomixing was Walter Munk (1966):

“. . . I have attempted, without much success, to interpret [the
eddy diffusivity] from a variety of viewpoints: from mixing along
the ocean boundaries, from thermodynamic and biological
processes, and from internal tides.”

2 / 23



Biomixing Dilute theory Simulations Squirmers Conclusions References

In situ experiments
Katija & Dabiri (2009) looked at jellyfish:

[movie 1] (Palau’s Jellyfish Lake.)
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http://www.math.wisc.edu/~jeanluc/movies/nature08207-s4.mpg
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Displacement by a moving body

Maxwell (1869); Darwin (1953); Eames et al. (1994)

4 / 23



Biomixing Dilute theory Simulations Squirmers Conclusions References

A sequence of kicks

Inspired by Einstein’s theory of
diffusion (Einstein, 1956): a test par-
ticle initially at x(0) = 0 under-
goes N encounters with an axially-
symmetric swimming body:

x(t) =
N∑

k=1

∆L(ak , bk) r̂k

∆L(a, b) is the displacement, ak ,
bk are impact parameters, and r̂k
is a direction vector.

L

a

target particle

swimmer

b

�

(a > 0, but b can have

either sign.)
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Effective diffusivity

Putting this together,

〈
|x|2
〉

=
2Unt

L

∫
∆2

L(a, b) da db = 4κt, 2D

〈
|x|2
〉

=
2πUnt

L

∫
∆2

L(a, b)a da db = 6κt, 3D

which defines the effective diffusivity κ.

If the number density is low (nLd � 1), then encounters are rare
and we can use this formula for a collection of particles.
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Inviscid cylinders and spheres (treadmill swimmer)

κ = π
3Un

∫
a2∆2

L(a, b) d(log a) d(b/L) 3D

Notice ∆L(a, b) is nonzero for 0 < b < L; otherwise independent
of b and L =⇒ have to cross point of closest approach.

a∆2
L(a, b) (cylinder) a2∆2

L(a, b) (sphere)
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Numerical simulation

• Validate theory using simple simple simulations;

• Large periodic box;

• Nswim swimmers (cylinders of radius 1), initially at random
positions, swimming in random direction with constant speed
U = 1;

• Target particle initially at origin advected by the swimmers;

• Since dilute, superimpose velocities;

• Integrate for some time, compute |x(t)|2, repeat for a large
number Nreal of realizations, and average.
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A ‘gas’ of swimmers
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[movie 2] 100 cylinders, box size = 1000
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http://www.math.wisc.edu/~jeanluc/movies/cylinder_gas.avi
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How well does the dilute theory work?
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Cloud of particles

[movie 3] (30 cylinders)
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http://www.math.wisc.edu/~jeanluc/movies/swimmers_mov.avi
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Cloud dispersion proceeds by steps
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Squirmers

Considerable literature on transport due to microorganisms: Wu &

Libchaber (2000); Hernandez-Ortiz et al. (2006); Saintillian & Shelley (2007); Ishikawa

& Pedley (2007); Underhill et al. (2008); Ishikawa (2009); Leptos et al. (2009)

Lighthill (1952), Blake (1971), and more recently Ishikawa et al.
(2006) have considered squirmers:

• Sphere in Stokes flow;

• Steady velocity
specified at surface,
to mimic cilia;

• Steady swimming
condition imposed
(no net force on
fluid). (Drescher et al., 2009) (Ishikawa et al., 2006)
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Typical squirmer

3D axisymmetric streamfunction for a
typical squirmer, in cylindrical coordi-
nates (ρ, z):

ψ = −1
2ρ

2 +
1

2r3
ρ2 +

3β

4r3
ρ2z

(
1

r2
− 1

)

where r =
√
ρ2 + z2, U = 1, radius of

squirmer = 1.

β is the amplitude of the stresslet (dis-
tinguises pushers/pullers).

We will use β = 5 for most of the re-
mainder.
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Particle motion for squirmer

A particle near the squirmer’s swimming
axis initially (blue) moves towards the
squirmer.

After the squirmer has passed the particle
follows in the squirmer’s wake.

(The squirmer moves from bottom to
top.)

[movie 4]
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http://www.math.wisc.edu/~jeanluc/movies/squirmer_flyby.avi
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Squirmer displacements a2∆2
L(a, b)

16 / 23



Biomixing Dilute theory Simulations Squirmers Conclusions References

Squirmers: Transport
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Squirmers: Trajectories

The two peaks in the displacement plot come from ‘incomplete’
trajectories:

b/λ = 0 b/λ = 0.5 b/λ = 1

For long path length, the effective diffusivity is independent of the
swimming path length, and yet the dominant contribution arises
from the finiteness of the path (uncorrelated turning directions).
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Non-Gaussian PDFs of displacement
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• Variance exhibits similar short-time anomalous scaling as in
Wu & Libchaber (2000);

• PDF qualitatively matches experiments of Leptos et al.
(2009). In our case, exponential tails are due to sticking at
the stagnation points on the squirmer’s body.
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Conclusions

• Simple dilute model works well for a range of swimmers;

• Slip surfaces have an effective diffusivity that is independent
of path length, for long path length;

• No-slip flows dominated by sticking and have a log
dependence on path length;

Future work:

• Wake models and turbulence;

• PDF of scalar concentration;

• Buoyancy effects for the ocean case;

• Higher densities;

• Schooling: longer length scale?
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Oseen, C. W. 1910 Über die Stokessche formel und über eine verwandte aufgabe in der hydrodynamik. Ark. Mat.
Astr. Fys. 6 (29), 1–20.

Saintillian, D. & Shelley, M. J. 2007 Orientational order and instabilities in suspensions of self-locomoting
rods. Phys. Rev. Lett. 99, 058102.

Thiffeault, J.-L. & Childress, S. 2010 Stirring by swimming bodies. Phys. Lett. A 374, 3487–3490.

Underhill, P. T., Hernandez-Ortiz, J. P. & Graham, M. D. 2008 Diffusion and spatial correlations in
suspensions of swimming particles. Phys. Rev. Lett. 100, 248101.

Wu, X.-L. & Libchaber, A. 2000 Particle diffusion in a quasi-two-dimensional bacterial bath. Phys. Rev. Lett.
84, 3017–3020.

23 / 23


	Biomixing
	Dilute theory
	Simulations
	Squirmers
	Conclusions

