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Biomixing

A controversial proposition:

• There are many regions of the ocean that are relatively
quiescent, especially in the depths (1 hairdryer/ km3);

• Yet mixing occurs: nutrients eventually get dredged up to the
surface somehow;

• What if organisms swimming through the ocean made a
significant contribution to this?

• There could be a local impact, especially with respect to
feeding and schooling;

• Also relevant in suspensions of microorganisms (Stokes
regime).
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Munk’s Idea
Though it had been mentioned earlier, the first to seriously
consider the role of biomixing was Walter Munk (1966):

“. . . I have attempted, without much success, to interpret [the
eddy diffusivity] from a variety of viewpoints: from mixing along
the ocean boundaries, from thermodynamic and biological
processes, and from internal tides.”
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Basic claims

The idea lay dormant for almost 40 years; then

• Huntley & Zhou (2004) analyzed the swimming of 100 (!)
species, ranging from bacteria to blue whales. Turbulent
energy production is ∼ 10−5 W kg−1 for 11 representative
species.

• Total is comparable to energy dissipation by major storms!

• Another estimate comes from the solar energy captured:
63 TeraW, something like 1% of which ends up as mechanical
energy (Dewar et al., 2006).

• Kunze et al. (2006) find that turbulence levels during the day
in an inlet were 2 to 3 orders of magnitude greater than at
night, due to swimming krill.
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Rain on the parade

Visser (2007) debunks these claims:

Let the turbulence be generated at a scale L, with a rate of
turbulent energy dissipation ε.

The buoyancy frequency N is defined as

N2 = −g

ρ

dρ

dz

where g is the gravitational acceleration and ρ(z) is the density.

The buoyancy length scale is

B = (ε/N3)1/2
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Mixing efficiency

The mixing efficiency is defined as

Γ =
change in potential energy

work done

so 0 ≤ Γ ≤ 1.

Visser’s point is that Γ depends
strongly on L/B.

For krill L = 1.5 cm, B = 3 to
10 m, so L/B = .005 to .0015.

Conclude: Γ = 10−4 to 10−3: al-
most none of the turbulent energy
goes into mixing.

(from Visser (2007))
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But it’s not over. . .
Katija & Dabiri (2009) looked at jellyfish:

[movie 1]
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Displacement by a moving body

(from Darwin (1953))

[movie 2] (movie from Katija & Dabiri (2009))
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A sequence of kicks

The age-old paradigm for calculating an effective diffusivity
consists of assuming a test particle undergoes uncorrelated “kicks”:
if a test particle initially at x(0) = 0 undergoes N encounters with
axially-symmetric swimming bodies, its position is

x(t) =
N∑

k=1

∆(ak) r̂k

where ∆(a) is the displacement, ak is the impact parameter, and
r̂k is a direction vector.

After squaring and averaging, assuming isotropy:〈|x|2〉 = N
〈
∆2(a)

〉
where a is treated as a random variable.
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Assuming the swimmers move in a straight line at speed U, the
number that will hit an “interaction disk” of radius R in time t is
2RUnt, where n is the number density.

The approach from infinity means that a is distributed as da/R.
Putting this together,

〈|x|2〉 = 2Unt

∫ ∞
0

∆2(a) da = 4κt, 2D

which defines the effective diffusivity κ.

In 3D, the factors are modified slightly:

〈|x|2〉 = 2πUnt

∫ ∞
0

a ∆2(a) da = 6κt, 3D
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Numerical simulation

• Validate theory using simple simple simulations;

• Periodic box of size L;

• N swimmers (spheres of radius 1), initially at random
positions, swimming in random direction with constant speed
U = 1;

• Target particle initially at origin advected by the swimmers;

• Since dilute, superimpose velocities;

• Integrate for some time, compute |x(t)|2, repeat for a large
number Nreal of realizations and average.
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A ‘gas’ of swimmers
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[movie 3] N = 100 swimmers, L = 1000
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How well does the dilute theory work?
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Diffusion is dominated by rare events
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2× 106 realizations of N = 10 cylinders, with L = 1000
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Contribution to displacement

Small a: ∆ ∼ − log a, large a: ∆ ∼ a−3 (Darwin, 1953)
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∫ 1
0 ∆2(a)da ' 2.31, whilst

∫∞
1 ∆2(a)da ' .06.

=⇒ 97% dominated by “head-on” collisions
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Origin of the singularity

At the leading and trailing ‘edges’ of a body,
there is a hyperbolic point. Locally,

ẋ = −λx , ẏ = λy

so that y(t) = y0 exp(λt). The time it takes
to go from y0 = a to y > a is

t = λ−1 log(y/a) ∼ −λ−1 log a

which is the source of the logarithmic diver-
gence of the displacement:

∆ ∼ −2Uλ−1 log a, a� 1

The factor of 2 is for leading+trailing edges.
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Four cases
For a wedge half-angle β, ∆ has four possible behaviors as a→ 0:

π > β > π
2 : aγ , nonsingular β = π

2 : − log a, integrable

π
2 > β > π

4 : a−γ , integrable π
4 > β > 0: a−γ , non-integrable
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Sphere in Stokes flow

A natural question is what happens in the presence of viscosity,
which greatly increases the “sticking” to the swimmer’s surface?

(from Camassa et al., Sphere Passing Through Corn Syrup)

Considerable literature on transport due to microorganisms: Wu &

Libchaber (2000); Hernandez-Ortiz et al. (2006); Saintillian & Shelley (2007);

Ishikawa & Pedley (2007); Underhill et al. (2008); Ishikawa (2009)
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Stokesian Spheres: Transport
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The transport is not diffusive, but is nearly ballistic!
(short-time result)
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Squirmers

One problem with the Stokesian spheres is that they are an awful
model for swimming: there is a net force on the fluid. It’s as if the
spheres are pulled by invisible threads.

Lighthill (1952), Blake (1971), and more recently Ishikawa et al.
(2006) have considered squirmers:

• Sphere in Stokes flow;

• Steady velocity
specified at surface,
to mimic cilia;

• Steady swimming
condition imposed
(no net force on
fluid). (Drescher et al., 2009) (Ishikawa et al., 2006)
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Typical squirmer

3D axisymmetric streamfunction for a typical squirmer, in
cylindrical coordinates (ρ, z):

ψ(ρ, z) = −1
2ρ

2 +
1

2r3
ρ2 +

3β

4r3
ρ2z

(
1

r2
− 1

)
where r =

√
ρ2 + z2, U = 1, radius of squirmer = 1.

Note that β = 0 is the sphere in potential flow!

We will use β = 5 for most of the remainder.
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Particle motion for squirmer

A particle near the squirmer’s swimming
axis initially (blue) moves towards the
squirmer.

After the squirmer has passed the particle
follows in the squirmer’s wake.

(The squirmer moves from bottom to
top.)

[movie 4]
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Small a asymptotics for squirmer
Four stagnation points for the squirmer
(B is a “ring” around the squirmer). A
particle coming close to the axis from
z = ∞ will encounter A, B, C in turn,
but never come near the trailing edge
stagnation point D.

The relative contribution of each point
is proportional to −λ−1 log a, where λ is
the coefficient of the linearized flow:

λ−1
A =

2

3(β + 1)
' 0.1111

λ−1
B =

4β

3(β2 − 1)
' 0.2778

λ−1
C = (mess) ' 3.0095
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Displacement for squirmer
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=⇒ 81% dominated by “head-on” collisions,

or 92% if we use the wake radius, 1.96.
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Squirmers: Transport
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Squirmers: Transport
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The short-time transport is anomalous.
Exponent is consistent with Wu & Libchaber (2000).
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Long-range correlations
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Because the net displacement decays faster than total extent of
trajectory, sensitive to perturbations.
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Conclusions

• Biomixing: no verdict yet;

• Simple dilute model works well, at least for potential flow;

• Potential flow dominated by “sticking”;

• Stokes flow dominated by long-range effects;

Future work:

• Wake models and turbulence;

• PDF of scalar concentration;

• Buoyancy effects;

• Schooling: longer length scale?
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