
Surface dynamics Entropy calculation Ocean floats Conclusions References

Braids of entangled particle trajectories

Jean-Luc Thiffeault

Department of Mathematics
University of Wisconsin – Madison

Institute for Mathematics and its Applications
University of Minnesota – Twin Cities

Dynamical Systems Seminar, U. Minnesota, 9 November 2009

Collaborators:

Sarah Matz University of Wisconsin
Matthew Finn University of Adelaide
Emmanuelle Gouillart CNRS / Saint-Gobain Recherche
Erwan Lanneau CPT Marseille
Toby Hall University of Liverpool

1 / 28

http://www.math.wisc.edu/~jeanluc
http://www.math.wisc.edu
http://www.wisc.edu
http://www.ima.umn.edu
http://www.umn.edu


Surface dynamics Entropy calculation Ocean floats Conclusions References

Surface dynamics

Low-dimensional topologists have long studied transformations of
surfaces such as the double-torus:

The central object of study is the homeomorphism: a continuous,
invertible transformation whose inverse is also continuous.
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Punctured disks

A surface of more practical relevance is the punctured disk:

For instance, it is a model of a two-dimensional vat of viscous fluid
with stirring rods.
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Punctured disks in experiments
The transformation in this case is given by the solution of a fluid
equation over one period of rod motion.

[P. L. Boyland, H. Aref, and M. A. Stremler, J. Fluid Mech. 403, 277 (2000)]

[movie 1] [movie 2]
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Action on curves

If we don’t know anything about a transformation φ, we can learn
a lot by looking at its action on some representative curves:

�

This is the action of the famous cat map of Arnold. In the
language of topology we are looking at its action on the
fundamental group.

Note that since the curves initially intersect only once, their image
only intersects once as well.
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Growth of curves for Cat Map

The Cat Map can be written(
x
y

)
7→
(

2 1
1 1

)(
x
y

)
(mod 1)

where the torus is the bi-periodic domain [0, 1]2.

At each application of the map, curves grow asymptotically by a
factor given by the largest eigenvalue of the matrix,

λ = 1
2 (3 +

√
5) = ϕ2, ϕ := 1

2 (1 +
√

5)

where ϕ is the Golden Ratio.

The rate of growth h = log λ is called the topological entropy.
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Growth of curves on a disk
On a disk with 3 punctures (rods), we can also look at the growth
of curves:

�1

�1�2
-1

�1�2
-1�1

�2
-1�1�2

-1�1

initial

We use the braid generator notation: σi means the clockwise
interchange of the ith and (i + 1)th rod. (Inverses are
counterclockwise.)

The motion above is denoted σ1σ
−1
2 .
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Growth of curves on a disk (2)

But how do we find the rate of growth of curves for motions on
the disk?

For 3 punctures it’s easy: the entropy for σ1σ
−1
2 is h = log φ2, just

like the Cat Map!

(This is not a coincidence: there is an intimate connection between the

two. For the specialist: the key word is double cover.)

For more punctures, this is a hard problem.
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Entropy calculation

The problem: given a periodic motion of n punctures on a disk,
what is the entropy?

Many aproaches available:

• Interval exchange map (orientable foliations — not general

enough);

• Train tracks and Bestvina–Handel algorithm (1995)
(computationally very hard — overkill);

• Burau representation (Kolev, 1989): super-fast, but only a
lower bound;

• Moussafir iterative technique (2006): fast and intuitive!

The Moussafir technique allows us to tackle large-scale problems.
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Iterating a loop

It is well-known that the entropy can be obtained by applying the
motion of the punctures to a closed curve (loop) repeatedly, and
measuring the growth of the length of the loop (Bowen, 1978).

The problem is twofold:

1. Need to keep track of the loop, since its length is growing
exponentially;

2. Need a simple way of transforming the loop according to the
motion of the punctures.

However, simple closed curves are easy objects to manipulate in
2D. Since they cannot self-intersect, we can describe them
topologically with very few numbers.
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Solution to problem 1: Loop coordinates

What saves us is that a closed loop can be uniquely reconstructed
from the number of intersections with a set of curves. For instance,
the Dynnikov coordinates involve intersections with vertical lines:
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Crossing numbers

Label the crossing numbers:
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Dynnikov coordinates

Now take the difference of crossing numbers:

ai = 1
2 (µ2i − µ2i−1) ,

bi = 1
2 (νi − νi+1)

for i = 1, . . . , n − 2.

The vector of length (2n − 4),

u = (a1, . . . , an−2, b1, . . . , bn−2)

is called the Dynnikov coordinates of a loop.

There is a one-to-one correspondence between closed loops and
these coordinates: you can’t do it with fewer than 2n− 4 numbers.
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Intersection number

A useful formula gives the minimum intersection number with the
‘horizontal axis’:

L(u) = |a1|+ |an−2|+
n−3∑
i=1

|ai+1 − ai |+
n−1∑
i=0

|bi | ,

For example, the loop on the
left has L = 12.

The crossing number grows
proportionally to the the
length.
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Solution to problem 2: Action on coordinates

Moving the punctures according to a braid generator changes some
crossing numbers:

�1
-1

There is an explicit formula for the change in the coordinates!
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Action on loop coordinates

The update rules for σi acting on a loop with coordinates (a,b)
can be written

a′i−1 = ai−1 − b+
i−1 −

(
b+

i + ci−1

)+
,

b′i−1 = bi + c−i−1 ,

a′i = ai − b−i −
(
b−i−1 − ci−1

)−
,

b′i = bi−1 − c−i−1 ,

where
f + := max(f , 0), f − := min(f , 0).

ci−1 := ai−1 − ai − b+
i + b−i−1 .

This is called a piecewise-linear action.
Easy to code up (see for example Thiffeault (2009)).
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Growth of L

For a specific rod motion, say as given by the braid
σ−1

3 σ−1
2 σ−1

3 σ2σ1, we can easily see the exponential growth of L
and thus measure the entropy:
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Growth of L (2)
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m is the number of times the braid acted on the initial loop.
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Random particle trajectories

Now consider a set of n particles advected by some flow, such as
the blinking vortex flow:
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Entropy by averaging over trajectories
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Oceanic float trajectories
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Oceanic floats: Data analysis

What can we measure?

• Single-particle dispersion (not a good use of all data)

• Correlation functions (what do they mean?)

• Lyapunov exponents (some luck needed!)
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Oceanic floats: Entropy
10 floats from Davis’ Labrador sea data:
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)
   entropy = 0.0171

crossings = 126

Floats have an entanglement time of about 50 days — timescale
for horizontal stirring.

Source: WOCE subsurface float data assembly center (2004)
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Lagrangian Coherent Structures

• There is a lot more information in
the braid than just entropy;

• For instance: imagine there is an
isolated region in the flow that
does not interact with the rest, a
Lagrangian coherent structure
(LCS);

• There is a tool for this: Braid
classification algorithms detect
reducing curves.

• Hence, could identify LCS from
particle trajectory data by
searching for reducing curves.

• For now: doesn’t scale well.

24 / 28



Surface dynamics Entropy calculation Ocean floats Conclusions References

Special issue of Chaos on LCS

New York Times, 29 September 2009.
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Conclusions

• Having rods undergo ‘braiding’ motion guarantees a minimal
amount of entropy (stretching of material lines);

• This idea can also be used on fluid particles to estimate
entropy;

• Need a way to compute entropy fast: loop coordinates;

• There is a lot more information in this braid: extract it!
(Lagrangian coherent structures);

• Long-term goal: a toolbox of topological methods to analyze
and make prediction about general flow properties;

• Holy grail: Three dimensions! (though current work applies to
many 3D situations. . . )

• To appear in special issue of Chaos. Preprint:
http://arxiv.org/abs/0906.3647
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