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Channel flow: Injection into mixing region

e Four-rod stirring device,
used in industry;

e Channel flow is upwards;

e Direction of rotation
matters a lot!

e This is because it changes
Injection Injection the injection point.

against flow with flow e Flow breaks symmetry.
Goals:

e Connect features to topology of rod motion: stretching rate,
injection point, mixing region;
e Use topology to optimise stirring devices.

Experiments by E. Gouillart and O. Dauchot (CEA Saclay).

[movie 1] [movie 2] [movie 3]


http://www.math.wisc.edu/~jeanluc/movies/fig8_exp_ghostrods.avi
http://www.math.wisc.edu/~jeanluc/movies/4rod_channel_exp_1.avi
http://www.math.wisc.edu/~jeanluc/movies/4rod_channel_exp_2.avi
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Mathematical description

Focus on closed systems.

Periodic stirring protocols in two dimensions can be described by a
homeomorphism ¢ : § — 8, where 8 is a surface.
For instance, in a closed circular container,

e ¢ describes the mapping of fluid elements after one full period
of stirring, obtained from solving the Stokes equation;

e 3 is the disc with holes in it, corresponding to the stirring rods
and distinguished periodic orbits.

Task: Categorise all possible .

@ and 1) are isotopic if 1 can be continuously ‘reached’ from ¢
without moving the rods. Write ¢ ~ .
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Thurston—Nielsen classification theorem

0 is isotopic to a homeomorphism ¢’, where ¢’ is in one of the
following three categories:

1. finite-order: for some integer k > 0, go’k ~ identity;

2. reducible: ¢’ leaves invariant a disjoint union of essential
simple closed curves, called reducing curves;

3. pseudo-Anosov: ¢’ leaves invariant a pair of transverse
measured singular foliations, " and J°, such
that ¢(F% 1) = (T Ap*) and ¢'(F°, %) = (I°, A7 1prd),
for dilatation A € Ry, A > 1.

The three categories characterise the isotopy class of .

Number 3 is the one we want for good mixing
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A singular foliation

The 'pseudo’ in pseudo-Anosov refers to the fact that the foliations
can have a finite number of pronged singularities.

3-pronged singularity
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Visualising a singular foliation

ST
J. O . 3-pronged singularity

injection point

A four-rod stirring
protocol;

Material lines trace out
leaves of the unstable
foliation;

Each rod has a
1-pronged singularity.
One 3-pronged
singularity in the bulk.
One injection point
(top): corresponds to
boundary singularity;
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Train tracks
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Thurston introduced train tracks as a way of characterising the
measured foliation. The name stems from the ‘cusps’ that look like
train switches.
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Train track map for figure-eight

1 a 2 b 3

o< —<O

ar>a2alab3biala, b—23lab

Easy to show that this map is efficient: under repeated iteration,

cancellations of the type a3 or b b never occur.

There are algorithms, such as Bestvina & Handel (1992), to find

References

efficient train tracks. (Toby Hall has an implementation in C++.)
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Topological Entropy

As the TT map is iterated, the number of symbols grows
exponentially, at a rate given by the topological entropy, log A.
This is a lower bound on the minimal length of a material line
caught on the rods.

Find from the TT map by Abelianising: count the number of
occurences of a and b, and write as matrix:

a\ 5 2\ [a
b 2 1) \b
The largest eigenvalue of the matrix is A = 1 + /2 ~ 2.41. Hence,

asymptotically, the length of the ‘blob’ is multiplied by 2.41 for
each full stirring period.

20
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Two types of stirring protocols for 4 rods

S =m0
.

2 injection points 1 injection pt, 1 3-prong sing.

Topological index formulas allow us to classify train tracks, and
thus stirring protocols.

References
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Pseudo-Anosovs involve ‘folding’ the foliation

Build pA's ‘in reverse,’ by regarding
them as a sequence of gluings or fold-
ings of pieces of foliation.

@ N
2 3
b 2 Make a transition matrix showing
1+2 how edges 1-4 are folded:
© 4
2 3

O O O
O O = =
o= OO
— O O O
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A train track folding automaton

The result is a folding automaton (a graph of train tracks):

CONEANZEM2

Each arrow represents a folding of an edge onto another.

A transition matrix is associated with each arrow.

pA's are closed paths in this automaton, since they should
leave the foliation invariant.

All pA's are contained therein (up to conjugacy).

12/20
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Automata can be simple. ..
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Or elegant. ..

n=7,2 X 4-prong
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Or pretty. ..

n=7,4 X 3-prong
“The maple leaf”

n = 7,2x3-prongs, 1 x4-prong
“The scarab”

References
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Or rather large. ..
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Or just ridiculous. . .

n=7,2 x 3-prongs (977 train tracks!)
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The Minimiser problem

On a given surface, which pA has the least \?

Known for n = 3, 4, 5 [Song, Ko & Los (2002); Ham & Song (2006)]
Method: look at all closed paths until column or row norm
exceeded.

Combinatorics explode: on a computer,

n = 3: trivial;

n = 4: milliseconds;

n = 5: seconds;

n=T7: about 8 months? (still running!);
n = 6: decades??

Minimiser is simple for n odd! New ideas are needed. . .

Maximiser (completely diffferent question. . .)

18 /20
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Conclusions

Having rods undergo ‘braiding’ motion guarantees a minimal
amound of entropy (stretching of material lines).

Topology also predicts injection into the mixing region,
important for open flows.

Classify all rod motions and periodic orbits according to their
topological properties.

Train track automata allow exploration of possible
pseudo-Anosovs.

Proof of minimiser for n = 7 (and other surfaces) ongoing.
Maximiser? (Some results — the silver mixer)

Holy grail: Three dimensions! (though current work applies to
many 3D situations. . .)
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