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Experiment of Rothstein et al. (1999)

Regular array of magnets

[Rothstein, Henry, and Gollub, Nature 401, 770 (1999)]
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Persistent Pattern

Disordered array (i = 2, 20, 50, 50.5)
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Local vs Global Regimes of Mixing

Local theory:

• Based on distribution of Lyapunov exponents.

• Applies if initial scale small.
• [Antonsen et al., Phys. Fluids (1996)] Average over angles

[Balkovsky & Fouxon, PRE (1999)] Statistical model
[Son, PRE (1999)] Statistical model

Global theory:
• Eigenfunction of advection–diffusion operator.
• Applies if initial scale large.
• Today: Focus on Global theory.
• Map allows analytical results.
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• [Antonsen et al., Phys. Fluids (1996)] Average over angles

[Balkovsky & Fouxon, PRE (1999)] Statistical model
[Son, PRE (1999)] Statistical model

Global theory:
• Eigenfunction of advection–diffusion operator.
• Applies if initial scale large.
• [Pierrehumbert, Chaos Sol. Frac. (1994)] Strange eigenmode

[Fereday et al., PRE (2002)] Baker’s map
[Sukhatme and Pierrehumbert, PRE (2002)] Unified description

• Today: Focus on Global theory.
• Map allows analytical results.
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A Diffeomorphism of the Torus

We consider a diffeomorphism of the 2-torus T
2 = [0, 1]2,

M(x) = M · x + φ(x),

where

M =

(

2 1

1 1

)

; φ(x) =
K

2π

(

sin 2πx1

sin 2πx1

)

;

so that M · x is the Arnold cat map.

The map M is area-preserving and chaotic.

For K = 0 the stretching of phase-space elements is uniform in
space (homogeneous).
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Advection and Diffusion

Iterate the map and apply the heat operator to a scalar field (which
we call temperature for concreteness) distribution θ(i−1)(x),

θ(i)(x) = Hε θ(i−1)(M−1(x))

where ε is the diffusivity, and the heat operator Hε and kernel hε

are

Hεθ(x) :=
∫

T2

hε(x − y)θ(y) dy;

hε(x) =
∑

k

exp(2πik · x − k2ε).
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Transfer Matrix

Fourier expand θ(i)(x),

θ(i)(x) =
∑

k

θ̂
(i)
k e2πik·x .

The effect of advection and diffusion becomes

θ̂(i)(x) =
∑

q

Tkq θ̂
(i−1)
q ,

with the transfer matrix,

Tkq :=
∫

T2

exp
(

2πi (q · x − k · M(x)) − ε q2
)

dx,

= e−ε q2

δ0,Q2
iQ1 JQ1

((k1 + k2) K) , Q := k · M − q,

where the JQ are the Bessel functions of the first kind.
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Variance: A measure of mixing

In the absence of diffusion (ε = 0), the variance σ(i)

σ(i) :=
∫

T2

∣

∣θ(i)(x)
∣

∣

2
dx =

∑

k

σ
(i)
k , σ

(i)
k

:=
∣

∣θ̂
(i)
k

∣

∣

2

is preserved. (We assume the spatial mean of θ is zero.)
For ε > 0 the variance decays.

We consider the case ε � 1, of greatest practical interest.

Three phases:

• The variance is initially constant;
• It then undergoes a rapid superexponential decay;

• θ(i) settles into an eigenfunction of the A–D operator that sets
the exponential decay rate.
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Decay of Variance
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Constant (Stirring) Phase

• Initially, the variance is essentially constant because of the
tiny diffusivity.

• However, there is a cascade of the variance to larger
wavenumbers under the action of M

−1 in the map. (Neglect
K term.)

• This is the well-known “filamentation” effect in chaotic
flows: the stretching and folding action of the flow causes
rapid variation of the temperature across the folds.

• Can no longer neglect diffusion after a number of iterations

i1 ' 1 + (log ε−1/ log Λ2) ' 6 for ε = 10−5,

where Λ = (3 +
√

5)/2 is the largest eigenvalue of M
−1.
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Variance: 5 iterations for K = 0.3 and ε = 10−3
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Superexponential Phase

For small K and k, we have J0 ((k1 + k2)K) � J1 ((k1 + k2)K),
so we set K = 0 and retain only the Q1 = 0 term in the transfer
matrix,

Tkq = e−ε q2

δ0,Q + O
(

(k1 + k2)
2K2

)

;

The nonvanishing matrix elements of T have k = q · M−1.

If initially the variance is concentrated in a single
wavenumber q0, then after one iteration it will all be in q0 · M−1,
after two in q0 · M−2, etc.

The length of q is multiplied by Λ at each iteration.

But each time the variance is multiplied by the diffusive decay
factor exp(−ε q2), with q getting exponentially larger; the net
decay is thus superexponential.
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Exponential Phase

• In the superexponential phase we completely neglected the
effect of the wave term in the map.

• We described the action as a perfect cascade to large
wavenumbers, so that the variance was irrevocably moved to
small scales and dissipated extremely rapidly.

• There can be no eigenfunction in such a situation, since the
mode structure changes completely at each iteration.

• This direct cascade process dominates at first, but it is so
efficient that eventually we must examine the effect of the the
wave term, which is felt through the Bessel functions in the
transfer matrix.

• Can the wave term lead to the formation of an eigenfunction
of the advection–diffusion operator, which would imply
exponential decay?
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An Eigenfunction?

Recall:

Tkq = e−ε q2

δ0,Q2
iQ1 JQ1

((k1 + k2) K) , Q := k · M − q,

Consider a matrix element for which Q1 6= 0. This means that the
initial (q) and final (k) wavenumbers connected by that matrix
element can differ from k · M = q by Q1 in their first component.

Is it possible for a wavenumber to be mapped back onto itself by
such a coupling? Seek solutions to

(q1 q2) · M = (q1 + Q1 q2) =⇒ (q1 q2) = (0 Q1) .

The matrix element connecting the (0 Q1) mode to itself is

T(0 Q1),(0 Q1) = e−ε Q2

1 iQ1 JQ1
(Q1 K) .
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Eigenfunction for K = 0.3 and ε = 10−3

(Renormalized by decay rate)
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Decay Rate

For small K, the dominant Bessel function is J1, so the decay
factor µ2 for the variance is

µ =
∣

∣T(0 1),(0 1)

∣

∣ = e−ε J1 (K) = 1
2K + O

(

ε K, K2
)

.

Hence, for small K the decay rate is limited by the (0 1) mode.
The decay rate is independent of ε for ε → 0.

This is an analogous result to the baker’s map [Fereday et al.,
PRE (2002)], except that here the agreement with numerical
results is good for K quite close to unity.

This is because in the baker’s map the discontinuity generates
many slowly-decaying harmonics at each step.
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Decay Rate as ε → 0
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Transition from Superexponential to Exponential

• Now that the mechanism of exponential decay is understood,
we can go back and describe the condition for breakdown of
the superexponential solution.

• The superexponential decay depletes the variance very
rapidly until all that is left is variance in the exponentially
decaying mode (0 1).

• The superexponential phase thus ends when the variance at
large wavenumbers equals that in mode (0 1).

• Assuming that the variance resides entirely in the k0 = (0 1)
mode initially, the condition for breakdown is

µi2 = exp
(

−ε
∥

∥k0 · M−(i2−1)
∥

∥

2
)

,

where µ2 is the decay factor of the variance in k0.
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rapidly until all that is left is variance in the exponentially
decaying mode (0 1).

• The superexponential phase thus ends when the variance at
large wavenumbers equals that in mode (0 1).

• Assuming that the variance resides entirely in the k0 = (0 1)
mode initially, the condition for breakdown is

µi2 = exp
(

−ε
∥

∥k0 · M−(i2−1)
∥

∥

2
)

,

where µ2 is the decay factor of the variance in k0.
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Transition (continued)

After substituting
∥

∥k0 · M−(i2−1)
∥

∥ ' Λi2−1, solve numerically
for i2.

For K = 10−3 and ε = 10−5, we have i2 ' 9.2, numerical results.

For ε � 1, approximate solution given by

i2 ' 1 + log
(

ε−1 log µ−1
)

/ log Λ2,

which gives i2 ' 8 for K = 10−3, ε = 10−5.

Subtracting i1 = 1 + log ε−1/ log Λ2, the onset of the
superexponential phase, we find the duration of the phase is

i2 − i1 ' log log µ−1

log Λ2
.
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Duration of Superexponential Phase

i2 − i1 ' log log µ−1

log Λ2

• Independent of ε ;

• Very weak dependence on the decay rate log µ ;
• Unless µ is small (recall that 0 < µ < 1), the

superexponential phase is short and may not be noticeable at
all, resembling instead a smooth transition;

• For log µ−1 > 1 there is no superexponential phase at all;
• Observed in experiments? There µ tends to be closer to unity,

so unlikely. But. . .
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Variance Spectrum of the Eigenfunction

• The long-wavelength mode (0 1) is the bottleneck that
determines the decay rate, for small K.

• But this dominant mode does not determine the structure of
the eigenfunction.

• In fact, a very small amount of the total variance actually
resides in that bottleneck mode: the variance is concentrated
at small scales.
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Cascade

The variance is taken out of the (0 1) mode by the map: there is a
cascade to larger wavenumber through the action of M

−1:

(0 1) → (−1 2) → (−3 5) → (−8 13) → . . . .

These become more and more aligned with the stable
(contracting) direction of the map.

The amplitude of the wavenumbers is multiplied at each step by a
factor Λ = (3 +

√
5)/2 ' 2.618, the largest eigenvalue of M

−1.

But we have seen that the exponential decay rate suggests that the
scalar concentration is in an eigenfunction of the
advection–diffusion operator.

What is going on?
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Eigenfunction: One Iteration

The wavenumbers are mapped back to themselves, with their
variance decreased by a uniform factor µ2 < 1 (vertical arrows).
But at the same time the modes are mapped to next one down the
cascade following the diagonal arrows.

� � �� � �� � �� � �� � �
� �� �� �� �� �
� � �� � �� � �� � �� � �
� �� �� �� �� �
� � �� � �� � �� � �� � �
� �� �� �� �� �

� � �� � �� � �� � �� � �
� �� �� �� �� �

PSfrag replacements

µ2

ν0 ν1 ν2

iteration i

iteration i − 1

k0 k1 k2 k3
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Eigenfunction and Cascade

The decrease in variance for each of the diagonal arrows is
diffusive and is given by the factor νn = exp(−2ε k2

n).

If we denote by σ
(i)
n := |θ̂kn

|2 the variance in mode kn at the ith
iteration, we have

σ
(i)
n = µ2 σ

(i−1)
n , n = 0, 1, . . . ,

σ
(i)
n = νn−1 σ

(i−1)
n−1 , n = 1, 2, . . . .

These two recurrences can be combined to give

Σ
(i)
n :=

σ
(i)
n

σ
(i)
0

=
νn−1 νn−2 · · · ν0

µ2n
= µ−2n exp

(

−2ε
n−1
∑

m=0

k2
m

)

,

where Σ
(i)
n is the relative variance in the nth mode.
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Eigenfunction and Cascade (cont’d)

The wavenumber is given by the exponential recursion,

‖kn‖ ' Λ ‖kn−1‖ =⇒ ‖kn‖ ' Λn ‖k0‖ = Λn .

Solve for n = log ‖kn‖ / log Λ and rewrite the relative variance as

Σ
(i)
n ' ‖kn‖−2 log µ/ log Λ exp

(

−2εk2
n/Λ2

)

,

where we retained only the k2
n−1 (last) term of the sum.

Does not (and should not) depend on the iteration number, i, and
depends only on n through kn. Find

Σ(k) = k2ζ exp
(

−2εk2/Λ2
)

, ζ := − log µ/ log Λ,

the spectrum of relative variance.
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Spectrum of Variance
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Spectrum of Variance (cont’d)

Σ(k) = k2ζ exp
(

−2εk2/Λ2
)

, ζ := − log µ/ log Λ

• Since µ < 1 and Λ > 1, we have ζ > 0.

• This implies that there is more variance at the large
wavenumbers than at the slowest-decaying mode k0.

Find the maximum of Σ(k),

km = Λ (ζ/2ε)1/2, Σ(km) = k2ζ
m e−ζ = k2ζ

m µlog Λ.

The peak wavenumber thus scales as ε−1/2, the same scaling as
the dissipation scale.
The relative variance in that peak wavenumber scales as ε−ζ .

km largest wavenumber that must be included in a numerical
calculation to capture the decay of variance correctly (fewer?).
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Conclusions

• Three phases of chaotic mixing: constant variance,
superexponential decay, exponential decay.

• Large-scale eigenmode dominates exponential phase, as for
baker’s map. [Fereday et al., PRE (2002)]

• The spectrum of this eigenmode is determined by a balance
between the eigenfunction property and a cascade to large
wavenumbers.

• For our case of a map with nearly uniform stretching, most of
the variance is concentrated at large wavenumbers.

• The decay rate is unrelated to the Lyapunov exponent or its
distribution.

• Global structure matters!
• Large K?
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