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Experiment of Boyland, Aref, & Stremler

[P. L. Boyland, H. Aref, and M. A. Stremler, J. Fluid Mech. 403, 277 (2000)]
[P. L. Boyland, M. A. Stremler, and H. Aref, Physica D 175, 69 (2003)]
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The Connection with Braiding




Generators of the n-Braid Group

A generator

® o o @ Tir, =

1s the clockwise interchange of
the i th and (7 + 1)th rod.

The generators obey the presen-
o tation

P ile i1 0i+1040i41 = 0430441 04
0;,0j = 040, ‘Z —j| > 1

These generators are used to characterise the motion of the rods.
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The Two BAS Stirring Protocols

o109 protocol

—1
o, 09 protocol

SISl

[P. L. Boyland, H. Aref, and M. A. Stremler, J. Fluid Mech. 403, 277 (2000)]

(d)
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Topological Entropy of a Braid

Practically speaking, the topological entropy of a braid is a lower
bound on the line-stretching exponent of the flow!

This 1s reasonable:

oo OiQ/CIDTQ

In practice, we compute the topological entropy of a braid using a
train-track algorithm due to Bestvina & Handel. The end result is
a transition matrix showing the how each edge 1s mapped under
the action of the braid.

[M. Bestvina and M. Handel, Topology 34, 109 (1995)]

Mixing with Ghost Rods — p.6/19



The Difference between BAS’s Two Protocols

The matrices associated the generators have eigenvalues on
the unit-circle (but their product doesn’t necessarily).

The first (bad) stirring protocol has eigenvalues on the unit
circle

The second (good) protocol has largest eigenvalue
(3+/5)/2 = 2.6180.

So for the second protocol the length of a line joining the
rods grows exponentially!

That 1s, material lines have to stretch by at least a factor
of 2.6180 each time we execute the protocol o; *os.

This 1s guaranteed to hold in some neighbourhood of the rods
(Thurston—Nielsen theorem).
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One Rod Mixer: The Kenwood Chef
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Poincaré Section
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Stretching of Lines
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Particle Orbits are Topological Obstacles

Choose any fluid particle orbit (green dot),

///

Material lines must bend around the orbit: it acts just like a “rod”!
[J-LT, Phys. Rev. Lett. 94, 084502 (2005)]

Today: focus on periodic orbits.

How do they braid around each other?
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Motion of Islands

Make a braid from the motion of —_— > o
the rod and the periodic islands. X S

Most (74%) of the topological
entropy 1s accounted for by this

braid. o =N
" al
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Motion of Islands and Unstable Periodic Orbits

Now we also include unsta-
ble periods orbits as well as
the stable ones (islands).

Almost all (99%) of the topo-
logical entropy 1s accounted
for by this braid.

But are the periodic orbits re-
ally “ghost rods”?

That 1s, do material lines re-
ally get out of their way?
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Periodic Orbits as Ghost Rods

[movie 3: sf_periodic.avi]
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http://www.ma.ic.ac.uk/~jeanluc/movies/sf_periodic.avi
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So Which Orbits Make Good Rods?

A good ghost rod should “look™ like a real rod: material lines
wrap around it.

Look at linearisation of the period-1 map:

Two eigenvalues A and A~! (Floquet multipliers),

with [A| > |A|7L.
A complex Elliptic Good rod (obvious).
Al >1 Hyperbolic Crap rod.
A=1 Parabolic Good rod?

The parabolic points are the most interesting: they are associated
with the crucial property of folding.
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Normal Form near a Parabolic Point

X" = X + quadratic terms
Y’ =Y + quadratic terms

or

X' =X 4+Y 4+ X?
Y =Y + X?

The first of these does not lead to folding.

The coefficient of X? determines the “size” of the rod, which is a
function of time.

[movie 4: folditer.avi]
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http://www.ma.ic.ac.uk/~jeanluc/movies/folditer.avi

Curvature of the Tip at the Periodic Orbit
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Conclusions

Topological chaos involves moving obstacles in a 2D flow,
which create nontrivial braids.

Periodic orbits make perfect obstacles (in periodic flows).

This 1s a good way to “explain” the chaos in a flow —
accounts for stretching of material lines.

Islands (elliptic orbits) look just like rods, and parabolic
orbits can look a lot like rods.

No need for infinitesimal separation of trajectories or
derivatives of the velocity field — this 1s an inherently global
description.

The size of the rods 1s important — for 1slands this 1s obvious
but for parabolic points the apparent size 1s a function of time.
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