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Experiment of Boyland et al.

[P. L. Boyland, H. Aref, and M. A. Stremler, J. Fluid Mech. 403,
277 (2000)] [Movies by Matt Finn: boyland1 boyland2 ]
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http://www.ma.ic.ac.uk/~jeanluc/movies/boyland1.avi
http://www.ma.ic.ac.uk/~jeanluc/movies/boyland2.avi


Generators of the n-Braid GroupPSfrag replacements
σ−1

i

σi

i − 1 i + 1 i + 2iPSfrag replacements

σ−1
i

σi

i − 1 i + 1 i + 2i

A generator

σi , i = 1, . . . , n − 1

is the clockwise interchange of
the i th and (i + 1)th rod.
The generators obey the presen-
tation

σi+1 σi σi+1 = σi σi+1 σi

σiσj = σjσi, |i − j| > 1

These generators are used to characterise the motion of the rods.
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The Two BAS Stirring Protocols

σ1σ2 protocol

σ−1
1 σ2 protocol

[P. L. Boyland, H. Aref, and M. A. Stremler, J. Fluid Mech. 403, 277 (2000)]
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Rod Trajectories as Braids

σ1σ2 protocol σ−1
1 σ2 protocol

[P. L. Boyland, H. Aref, and M. A. Stremler, J. Fluid Mech. 403, 277 (2000)]
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Matrix Representation of the σi

We use the convenient Burau representation

σi = Ii−2 ⊕







1 −τ 0

0 −τ 0

0 −1 1






⊕ In−i−2

where τ ∈ C. The matrices are (n − 1) × (n − 1).

The Burau matrices satisfy the presentation (of course), but for
n > 4 they do not provide a faithful representation.

This is of no great consequence for our purposes.
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Topological Entropy of a Braid

Practically speaking, the topological entropy of a braid is a lower
bound on the line-stretching exponent of the flow!
This is Eminently ReasonableTM:

I II

σ2
=⇒ II’

I’

The Burau representation has an awesome property: if Σ is the
Burau representation of a braid word,

topological entropy of braid ≥ sup
|τ |=1

spr Σ [Kolev]

where spr denotes the spectral radius (the magnitude of the largest
eigenvalue).
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The Difference between BAS’s Two Protocols

• The matrices associated the generators have eigenvalues on
the unit-circle.

• The first (bad) stirring protocol has eigenvalues on the unit
circle

• The second (good) protocol has largest eigenvalue
(3 +

√
5)/2 = 2.6180.

• So for the second protocol the length of a line joining the
rods grows exponentially!

• That is, material lines have to stretch by at least a factor
of 2.6180 each time we execute the protocol σ−1

1 σ2.
• This is guaranteed to hold in some neighbourhood of the rods

(Thurston–Nielsen theorem).
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Freely-moving Rods in a Cavity Flow

[A. Vikhansky, Physics of Fluids 15, 1830 (2003)]
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Particle Orbits are Topological Obstacles

Choose any fluid particle orbit (green dot).

Material lines must bend around the orbit: it acts just like a “rod”!
The idea: pick any n fluid particles and follow them.

How do they braid around each other?
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Detecting Braiding Events
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In the second case there is no net braid: the two elements cancel
each other.
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Random Sequence of Braids

We end up with a sequence of braids, with matrix representation

Σ(N) = σ(N) · · · σ(2)σ(1)

where σ(µ) ∈ {σi, σ
−1
i } and N is the number of braiding events

detected after a time t.

The largest eigenvalue of Σ(N) is a measure of the complexity of
the braiding motion, called the braiding factor.

Random matrix theory says that the braiding factor can grow
exponentially! We call the rate of exponential growth the braiding
Lyapunov exponent or just braiding exponent.
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Non-braiding Motion

First consider the motion of of three points in concentric circles
with irrationally-related frequencies.
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The braiding factor grows linearly, which means that the braiding
exponent is zero. Notice that the eigenvalue often returns to unity.
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Blinking-vortex Flow

To demonstrate good braiding, we need a chaotic flow on a
bounded domain (a spatially-periodic flow won’t do).
Aref’s blinking-vortex flow is ideal.

Vortex

First half of period Second half of period

Vortex
Active Inactive

The only parameter is the circulation Γ of the vortices.
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Blinking Vortex: Non-braiding Motion

For Γ = 0.5, the blinking vortex has only small chaotic regions.
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One of the orbits is chaotic, the other two are closed.
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Blinking Vortex: Braiding Motion

For Γ = 13, the blinking vortex is globally chaotic.
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The braiding factor now grows exponentially. In the same time
interval as for Γ = 0.5, the final value is now of order 1020 rather
than 80!

Topological Kinematics of Mixing – p.16/29



Averaging over many Triplets

0 500 1000 1500 20000

50

100

150

200

250

300

350

400

PSfrag replacements

Lo
g

of
ei

ge
nv

al
ue

of
Σ

(N
)

t

Γ = 13

slope = 0.187

Averaged over 100 random triplets.
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Comparison with Lyapunov Exponents
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Γ varies from 8 to 20.
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Beyond Three Particles
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But does it Saturate?
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Well, it really should. . .
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One Rod Mixer: The Kenwood Chef
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Poincaré Section
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Stretching of Lines
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Motion of Islands

Make a braid from the motion of
the rod and the periodic islands.
Most (74%) of the topological
entropy is accounted for by this
braid.
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Motion of Islands and Unstable Periodic Orbits

Now we also include unsta-
ble periods orbits as well as
the stable ones (islands).
Almost all (99%) of the topo-
logical entropy is accounted
for by this braid.
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Periodic Orbits as Rods

[movie: sf_periodic.avi]
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Blowup of the Tip
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Curvature of the Tip
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[Preliminary result: not sure this is generic.] Topological Kinematics of Mixing – p.28/29



Conclusions

• Topological chaos involves moving obstacles in a 2D flow,
which create nontrivial braids.

• The complexity of a braid can be represented by the largest
eigenvalue of a product of matrices—the braiding factor.

• Any collection of n particles can potentially braid.
• The complexity of the braid is a good measure of chaos.
• No need for infinitesimal separation of trajectories or

derivatives of the velocity field.
• Many issues to investigate: faithfulness of representation,

improved lower bound for topological entropy, reducibility of
braids, size of “ghost rod” for periodic orbits. . .

• See J-LT, Phys. Rev. Lett. 94, 084502 (2005).
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