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Surface Diffeomorphisms

• We consider a family of smooth diffeos ft : M → M,
parametrised by t ∈ [0, 1].

• f1 leaves invariant n punctures in the surface M.

• The motion of the punctures traces a braid.

• This braid implies a minimum topological entropy for f1.

• Given only the abstract braid, in terms of group generators,
how do we compute its topological entropy?

• We want to do this for very large braids, so we need a method
that is computationally efficient.
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Topological Entropy

• Can compute the topological entropy in several ways:
• Train-tracks algorithm such as Bestvina–Handel (1995).
• (Poor) lower bound using Burau representation (Kolev 1989).

• Implementation of B–H algorithm due to Toby Hall takes
Artin braid group generators as input.

• Prohibitive for even a small (∼ 40) number of generators.

• No simple implementation for the torus.
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The Algorithm of Moussafir

• Recently, Moussafir (2006) introduced a fast method that
converges to the exact entropy of a braid.

• Uses Dynnikov coordinates (2002) to encode the number of
crossings between a lamination and a reference line.

• Less information than train tracks, but at lower cost.

• Here: derive such an algorithm for braids on the torus.

• Allows a topological analysis of bi-periodic systems, such as
the sine flow.
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Braid Group Generators

Birman (1969) defines three types of generators for the braid group
on the torus.

The usual Artin braid group is a subgroup that only uses σ.
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Lamination and Triangulation

A lamination is an equivalence class of simple closed curves.

The triangulation links the punctures, but is not unique. We count
the crossings between the lamination and triangulation.
The triangulation is static, but the lamination is evolved under the
diffeomorphism.
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Triangulation (2)

We often show multiple copies of the domain (universal cover). A
dotted line separates copies.

U and L label triangles, x , y , z are crossing numbers.
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Edge-linking Numbers

Any part of the lamination passing between edges x and y is
counted by T z , similarly for T x and T y .

T x = 1
2 (y + z − x)

T y = 1
2 (x + z − y)

T z = 1
2 (x + y − z)

The lamination is always assumed to be
‘pulled tight.’
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Crossing Update Rules

• The diffeomorphism changes the lamination as described using
braid group generators for the punctures.

• The crossing numbers with the triangulation also change.

• The goal is to calculate the ‘update rules’ for the crossing
numbers, given the generators.

• The preimage of edge e is e∗, which is a curve that becomes e
after the braid operation.

• The number of crossings of e∗ before the braid operation has
to be equal to the number of crossings with e.

• But e∗ is usually not part of the triangulation!

• Like playing Minesweeper: we know some numbers, we must
deduce others.
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Crossing Update Rules for ρ3

Only edges x2, y2, x3, y3 and z3 change.

x2 and y3 are the preimages of y2 and x3, respectively, so y∗2 = x2

and x∗3 = y3. The edge z3 is its own preimage, z∗3 = z3.
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The Quadrilateral Puzzle

The preimages of x2 and y3 are not edges in the triangulation. We
must deduce their crossing numbers.

Curves entering x2 and z3 must cross x∗2 , unless they loop directly
from x2 to z3. The number of these loops is exactly min(Uz

2 , Lx
2).

Hence the number of preimage crossings is x2 + z3− 2 min(Uz
2 , Lx

2).
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Crossing Update Rules for ρi

For general i , we have

x∗i−1 = xi−1 + zi − 2 min(Uz
i−1, L

x
i−1)

y∗i−1 = xi−1

x∗i = yi

y∗i = zi + yi − 2 min(Uy
i , Lz

i )

z∗i = zi
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Crossing Update Rules for ρ−1
i

Because of the π-rotational symmetry of the triangulation, we
easily find the update rules for ρ−1

i directly from that for ρi :

x∗i−1 = yi−1

y∗i−1 = yi−1 + zi − 2 min(Uz
i−1, L

y
i−1)

x∗i = zi + xi − 2 min(Ux
i , Lz

i )

y∗i = xi

z∗i = zi
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Crossing Update Rules for σ2

Two punctures are permuted clockwise! Many more edges
involved.

Edge x2 is its own preimage, but all other preimages require some
Minesweeping. Edge y∗2 is of the quadrilateral form.
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Crossing Puzzle for x∗1 and y ∗1
The number of crossings with preimage x∗1 is given by the number
of curves crossing x1 and x2, minus twice the number of loops
directly between x1 and x2, given by min(Ly

1 ,Ux
2 , Lz

2). Hence
x∗1 = x1 + x2 − 2 min(Ly

1 ,Ux
2 , Lz

2).
The preimage problem for y∗1 is similar, but involves 4 triangles, so
that y∗1 = y1 + x2 − 2 min(Uz

1 , Ly
1 ,Ux

2 , Lz
2).

Preimages x∗3 and y∗3 are handled in the same way.
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Crossing Puzzle for z∗2 and z∗3
Still need to find z∗2 and z∗3 , which pass through 7 (!) triangles.
We deduce z∗2 and z∗3 by invoking the quadrilateral solution with
the updated crossing numbers. We introduce temporary edges p
and q directly between punctures 1 and 3 and between 2 and 4.

The preimage of p is y1, and the preimage of q is y3. Since x∗1 , y∗1 ,
p, x∗2 , y∗2 , q, x∗3 and y∗3 are known, z∗2 and z∗3 follow.

16 / 34



Introduction Lamination & Triangulation Update Rules Numerical Tests Conclusions

Crossing Update Rules for σi

Putting it all together,

x∗i−1 = xi−1 + xi − 2 min(Ly
i−1,U

x
i , Lz

i )

y∗i−1 = yi−1 + xi − 2 min(Uz
i−1, L

y
i−1,U

x
i , Lz

i )

x∗i = xi

y∗i = zi + xi − 2 min(Ux
i , Lz

i )

z∗i = x∗i−1 + y∗i−1 −min(y∗i−1 + yi−1 − x∗i , x∗i−1 + yi−1 − y∗i )

x∗i+1 = xi + xi+1 − 2 min(Uz
i , Lx

i ,U
y
i+1)

y∗i+1 = xi + yi+1 − 2 min(Uz
i , Lx

i ,U
y
i+1, L

z
i+1)

z∗i+1 = x∗i + y∗i −min(x∗i + yi+1 − y∗i+1, y
∗
i + yi+1 − x∗i+1).
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Crossing Update Rules for σ−1
i

Lack of reflection symmetry about a vertical line through the
midpoint of two punctures means that it is not possible to deduce
the update rules for σ−1

i by a relabelling in the rules for σi .

The preimage curve y∗i is the most complicated yet, as it passes
through ten triangles.
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Crossing Update Rules for σ−1
i (2)

However, things proceed pretty much as before, so we quote the
result:

x∗i−1 = xi−1 + xi − 2 min(Uz
i−1, L

x
i−1,U

y
i )

y∗i−1 = yi−1 + xi − 2 min(Lx
i−1,U

y
i )

x∗i = xi

y∗i = x∗i + z∗i −min(z∗i + yi − x∗i , x∗i + yi − z∗i+1)

z∗i = xi + yi − 2 min(Ux
i , Ly

i−1,U
z
i−1, L

x
i−1,U

y
i )

x∗i+1 = xi + xi+1 − 2 min(Ly
i ,Ux

i+1, L
z
i+1)

y∗i+1 = yi + xi+1 − 2 min(Lx
i ,U

y
i+1) = xi + yi+1 − 2 min(Ly

i ,Ux
i+1)

z∗i+1 = xi + yi − 2 min(Ly
i ,Ux

i+1, L
z
i+1,U

y
i+1, L

x
i )
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Crossing Update Rules for τ1

Our choice of triangulation makes ρi easy but τi quite complicated.
Instead of attacking this problem directly, τ1 can be achieved by a
sequence of σi , including σn, followed by one ρ−1

1 .

The same technique works for τ−1
i .
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Crossing Update Rules for τi

To calculate the updated set of crossing numbers {xi , yi , zi} for τi

do the following:

1. Perform, in turn, σ−1
i−1, σ−1

i−2, . . ., σ−1
i+2 and σ−1

i+1. Treat the

indices ‘modulo’ n, so that σ−1
n follows σ−1

1 .

2. Relabel xi ← xi+1, yi ← yi+1 and zi ← zi+1. This leaves all
punctures except the ith one in the correct position.

3. Perform ρ−1
i .
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A Finite-Order Braid: σ1

We can reconstruct a lamination from the crossing numbers, so
our update rules allow us to draw it ‘on the fly.’
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Another Finite-Order Braid: τ2
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The Identity Braid σ−2
1 ρ−1

1 τ2ρ1τ
−1
2
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Calculating Topological Entropy

For braids on the sphere, Moussafir (2006) showed that the
number of crossings grows at the same rate as the topological
entropy implied by the braid. The same result applies here:

λ† = log
∑

i

(x∗i + y∗i + z∗i )− log
∑

i

(xi + yi + zi )

as the number of crossings goes to infinity.
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The Golden Braid: σ1σ
−1
2

Topological entropy is 2 log
(

1
2(1 +

√
5)

)
.
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The Silver Braid: σ1σ3σ
−1
2 σ−1

4

Topological entropy is 4 log
(
1 +
√

2
)
.
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Convergence to the Topological Entropy

Convergence of λ† to the exact braid entropy λ appears to be
exponential (provided the braid has a pseudo-Anosov component).

iteration total crossings entropy λ† error |λ − λ†|
1 24 2.48490664978800 0.72215947574891
2 154 1.85889877206568 0.09615159802660
3 912 1.77868738766070 0.01594021362162
4 5330 1.76546652708556 0.00271935304647
5 31080 1.76321328732169 0.00046611328261
6 181162 1.76282713309230 0.00007995905321
7 1055904 1.76276089245107 0.00001371841199
8 6154274 1.76274952773491 0.00000235369583
9 35869752 1.76274757786911 0.00000040383002

10 209064250 1.76274724332535 0.00000006928627
11 1218515760 1.76274718592673 0.00000001188765
12 7102030322 1.76274717607868 0.00000000203960
13 41393666184 1.76274717438903 0.00000000034994
14 241259966794 1.76274717409913 0.00000000006004
15 1406166134592 1.76274717404939 0.00000000001030
16 8195736840770 1.76274717404085 0.00000000000177
17 47768254910040 1.76274717403939 0.00000000000030
18 278413792619482 1.76274717403914 0.00000000000005
19 1622714500806864 1.76274717403910 0.00000000000001
20 9457873212221714 1.76274717403908 0.00000000000000
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The Sine Flow

Area-preserving map obtained by integrating alternating sine flow,
defined over 0 ≤ x , y < 1, period T .

x
n+

1
2

= xn + 1
2T sin (2πyn)

y
n+

1
2

= yn

xn+1 = x
n+

1
2

xn+1 = y
n+

1
2

+ 1
2T sin

(
2πx

n+
1
2

)

Exhibits wide range of behaviour as T is varied, from integrability
to near-total chaos.
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Periodic Orbits for T = 1

{(1
2 , 3

4), (1, 3
4)}

{(0, 1
4), (1

2 , 1
4)}

{(1
4 , 0), (1

4 , 1
2)}

{(3
4 , 1

2), (3
4 , 1)}
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Mapping to Braid Generators

Encode the trajectories in terms of braid group generators.

The braid word is
σ1σ

−1
2 τ−1

4 σ−1
3 σ−1

2 σ−1
1 σ7σ

−1
6 τ5σ

−1
5 σ−1

6 σ−1
7 ρ−1

3 σ2ρ6σ6, with entropy
1.21875572687 . . . (82% of the flow entropy).
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Convergence to Flow Entropy

Now follow arbitrary trajectories [Gambaudo (1999), Thiffeault

(2005)]: the resulting nonperiodic braid has entropy that converges
to the ‘true’ entropy of the flow.

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

n

(λ
−

λ* )/
λ

T = 0.5, λ  = 0.62
T = 1.0, λ  = 1.48
T = 1.5, λ  = 2.23
T = 2.0, λ  = 2.78
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Conclusions

• Compute topological entropy of braids.

• Unlike train-tracks, not exact, but very accurate for braids
with a pA component.

• Exact entropies by ‘short-circuiting.’

• Fast! Use integer arithmetic or double precision.

• Allows the use of extremely long ‘random braids’ with millions
of generators.

• An easy way to estimate the topological entropy of a flow.
Even accessible experimentally!

• See http://arXiv.org/nlin/0603003 for preprint.
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