
A Bound on Mixing Efficiency

Jean-Luc Thiffeault

Department of Mathematics, Imperial College London

Charles R. Doering

Department of Mathematics and Michigan Center for Theoretical Physics,

University of Michigan

John D. Gibbon

Department of Mathematics, Imperial College London

http://www.ma.imperial.ac.uk/˜jeanluc

A Bound on Mixing Efficiency – p.1/16



Summary

• Derive upper bound on the mixing efficiency for a scalar
under the influence of advection and diffusion with a body
source (e.g. , differential heating between equator and poles).

• Inspired by work on Navier–Stokes by Doering & Foias
(2002).

• Mixing efficiency measured in terms of an equivalent
diffusivity.

• The precise value of the bound on the equivalent diffusivity
depends only on the functional shape of both the source and
the advecting field.

• Direct numerical simulations performed for a simple
advecting flow to test the bounds.
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The Setup

PSfrag replacements

L

`

• Periodic system (2 or 3
dimensions)

• Stirring and source of
scalar variance at scale `

• System of size L

• Velocity field regarded as
given: could be
time-dependent and even
turbulent

• Source distribution and
strength could also be
time-dependent
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Advection–Diffusion Equation

∂tθ + u · ∇θ = κ ∆θ + s , (A-D)

where κ is the molecular diffusivity and s(x, t) is a source
function with zero spatial mean.

To characterise the fluctuations in θ, we use the variance,

Θ2 ≡
〈

L−d ‖θ‖2
L2(Td)

〉

The angle brackets 〈·〉 denote a long-time average, and ‖·‖L2(Td)

is the L2 norm on T
d. Decompose s and u as

s(x, t) = S Φ(x/`, t/τ),
〈

L−d ‖Φ‖2
L2(Td)

〉

= 1,

u(x, t) = U Υ(x/`, t/τ),
〈

L−d ‖Υ‖2
L2(Td)

〉

= 1.
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The Bounds

We will restrict to a time-independent source, so ∂tΦ = 0.
(See paper for more general case.)

Introduce an arbitrary function Ψ that satisfies
〈

L−d

∫

Td

Ψ(x/`) Φ(x/`) ddx

〉

= 1,

For example Ψ = Φ is a possible choice.

Multiply A-D by Ψ and space-time average. After some
integration by parts and use of normalisations,

S = −
〈

L−d

∫

Td

(u · ∇Ψ + κ ∆Ψ) θ ddx

〉

.
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The Bounds (continued)

The Cauchy–Schwartz inequality,

‖fg‖L1(Td) ≤ ‖f‖L2(Td) ‖g‖L2(Td)

implies the bound

S ≤
〈

L−d ‖u · ∇Ψ + κ ∆Ψ‖2
L2(Td)

〉1/2
Θ.

The unknown θ has now been extracted from the average and
appears only as a norm that characterises its fluctuations.

We may think of this as a lower bound on the fluctuations in θ in
terms of the source strength S, the vigor of stirring U , and their
shape Φ and Υ.
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The Bounds (continued)

Substituting the scaled variables T = t/τ and y = x/`, we have

S ≤ UΘ

`

〈

‖Ω‖2
L2(Id)

〉1/2

where I = [0, 1] is the unit interval and

Ω(y, T ) ≡ −Υ(y, T ) · ∇yΨ(y) − 1

Pe
∆yΨ(y).

Here the Péclet number is Pe = U`/κ.

In principle the bound could be sharpened by varying the arbitrary
function Ψ. Requires solution of the associated Euler–Lagrange
equation for the specific problem at hand (i.e., Φ and Υ).
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The Bounds (continued)

We give up a bit of sharpness (inconsequential at large Pe) by
using the triangle inequality, and find

S ≤ UΘ

`

(

c1 + Pe−1 c2

)

,

where c1 ≡
〈

‖Υ · ∇yΨ‖2
L2(Id)

〉1/2
, c2 ≡

〈

‖∆yΨ‖2
L2(Id)

〉1/2
.

are dimensionless constants, independent of Pe and Θ.

c1 depends explicitly on the stirring shape-function Υ and
implicitly on the source shape function Φ through the
normalisation condition on Ψ.

A Bound on Mixing Efficiency – p.8/16



Bound on Equivalent Diffusivity

Express bound in terms of an equivalent diffusivity:

κeq ≡ S`2

Θ
≤ c1 U` + c2 κ,

• The equivalent diffusivity compares the source amplitude (S)
to the steady-state fluctuations in the concentration field (Θ).

• A high Péclet number (Pe ≡ U`/κ) mixing device should
operate with as high a κeq as possible compared to κ.

• κeq = κ for U = 0, which is the purely diffusive case (after a

trivial rescaling, not included above).
• The scaling U` is often used as a rough estimate for turbulent

diffusivity, but here we have an explicit prefactor that
depends on the stirring and source distribution.
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Global Upper Bound

For a given source distribution Φ, we can use the Hölder
inequality

‖fg‖L1(Td) ≤ ‖f‖Lp(Td) ‖g‖Lq(Td) , 1
p + 1

q = 1,

and write

c1 =
〈

‖Υ · ∇yΨ‖2
L2(Id)

〉1/2
≤

〈

‖Υ‖2
L2(Id)

〉1/2
sup
y,t

|∇yΨ|

c1 ≤ sup
y,t

|∇yΨ|

This bound is valid for any stirring velocity field u(x, t).
No flow that can be more efficient than this!
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Example: Random Sine Flow

Alternating horizontal and vertical sine shear flows, with
randomised phase. Source distribution (shaded) is fixed.
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Calculating the Bound

Shape function for the source:

Φ =
√

2 sin 2πy1,

and for the velocity field:

Υ =

{√
2 (0 , sin(2πy1 + χ1)) , n < T < (n + 1

2) ;√
2 (sin(2πy2 + χ2) , 0) , (n + 1

2) < T < (n + 1) .

χ1 and χ2 are random angles.

We choose Ψ = Φ, though in principle this could be optimised.

Υ·∇yΨ =

{

0, n < T < (n + 1
2) ;

4π sin(2πy2 + χ2) cos 2πy1, (n + 1
2) < T < (n + 1) .
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Calculating the Bound

‖Υ · ∇yΨ‖2
L2(Id) =

{

0, n < T < (n + 1
2) ;

4π2, (n + 1
2) < T < (n + 1) .

c1 =
〈

‖Υ · ∇yΨ‖2
L2(Id)

〉1/2
=

[

1
2

(

0 + 4π2
)]1/2

=
√

2 π.

After including a trivial rescaling of (2π)−2 (so that κeq reduces
to κ in the absence of stirring), we find

κeq ≤ UL

2
√

2 π
+ κ
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Computing the Equivalent Diffusivity
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Comparison with Numerical Results
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Conclusions

• Simple bound on fluctuations in the concentration of a scalar,
active or passive.

• The constants involved in the bound only depend on the
shape of the source distribution and stirring field.

• Suffers from the same problems as all bounding approaches:
Hard to tease out physics!

• Nevertheless, important to know where one expects the
answer to lie, and little work is required for bounding.

• Exploit this to try and optimise mixing configurations: focus
on the bound rather than a full solution of the A-D equation.
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