Local and Global Aspects of Mixing

Jean-Luc Thiffeault
Department of Mathematics
Imperial College London

with

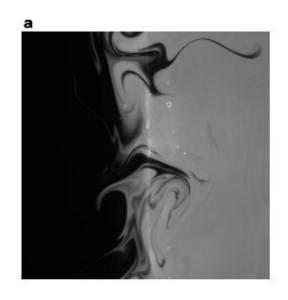
Steve Childress

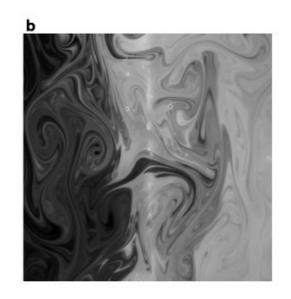
Courant Institute of Mathematical Sciences

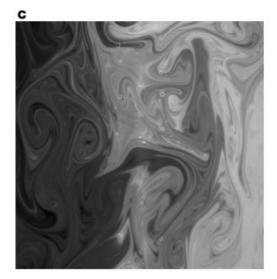
New York University

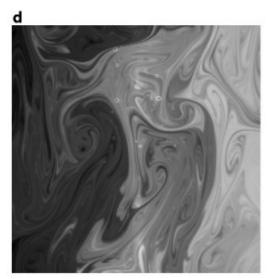
http://www.ma.imperial.ac.uk/~jeanluc

Experiment of Rothstein et al.: Persistent Pattern







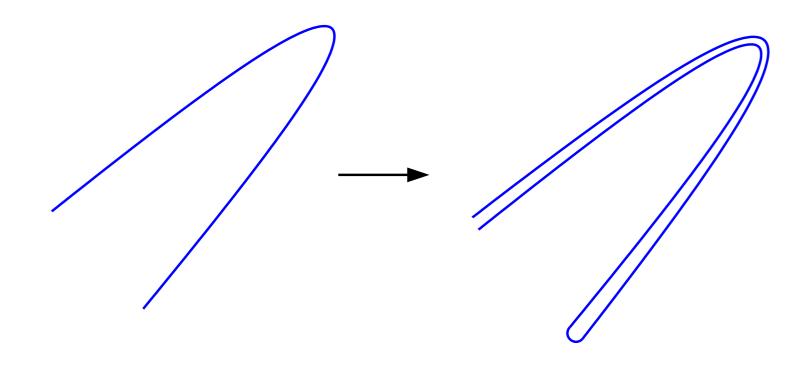


Disordered array of magnets with oscillatory current drive a thin layer of electrolytic solution.

periods 2, 20, 50, 50.5

[Rothstein, Henry, and Gollub, Nature **401**, 770 (1999)]

Evolution of Pattern



- "Striations"
- Smoothed by diffusion
- Eventually settles into "pattern" (eigenfunction)

Local theory:

• Based on distribution of Lyapunov exponents.

Local theory:

- Based on distribution of Lyapunov exponents.
- [Antonsen et al., Phys. Fluids (1996)] [Balkovsky and Fouxon, PRE (1999)] [Son, PRE (1999)]

Average over angles
Statistical model
Statistical model

Local theory:

- Based on distribution of Lyapunov exponents.
- [Antonsen et al., Phys. Fluids (1996)] [Balkovsky and Fouxon, PRE (1999)] [Son, PRE (1999)]

Average over angles Statistical model Statistical model

Global theory:

• Eigenfunction of advection—diffusion operator.

Local theory:

- Based on distribution of Lyapunov exponents.
- [Antonsen et al., Phys. Fluids (1996)] [Balkovsky and Fouxon, PRE (1999)] [Son, PRE (1999)]

Average over angles Statistical model Statistical model

- Eigenfunction of advection—diffusion operator.
- [Pierrehumbert, Chaos Sol. Frac. (1994)] Strange eigenmode [Fereday et al., Wonhas and Vassilicos, PRE (2002)] Baker's map [Sukhatme and Pierrehumbert, PRE (2002)] [Fereday and Haynes (2003)] Unified description

Local theory:

- Based on distribution of Lyapunov exponents.
- [Antonsen et al., Phys. Fluids (1996)] [Balkovsky and Fouxon, PRE (1999)] [Son, PRE (1999)]

Average over angles Statistical model Statistical model

- Eigenfunction of advection—diffusion operator.
- So far, local theories are Lagrangian and global theories are Eulerian.

Local theory:

- Based on distribution of Lyapunov exponents.
- [Antonsen et al., Phys. Fluids (1996)] [Balkovsky and Fouxon, PRE (1999)] [Son, PRE (1999)]

Average over angles Statistical model Statistical model

- Eigenfunction of advection—diffusion operator.
- So far, local theories are Lagrangian and global theories are Eulerian.
- Today: Try to connect the two pictures.

Local theory:

- Based on distribution of Lyapunov exponents.
- [Antonsen et al., Phys. Fluids (1996)] [Balkovsky and Fouxon, PRE (1999)] [Son, PRE (1999)]

Average over angles Statistical model Statistical model

- Eigenfunction of advection—diffusion operator.
- So far, local theories are Lagrangian and global theories are Eulerian.
- Today: Try to connect the two pictures.
- Cannot often do this! Map allows (mostly) analytical results.

A Bit of History

Eulerian (spatial) coordinates are due to...

A Bit of History

Eulerian (spatial) coordinates are due to...

d'Alembert

A Bit of History

... and Lagrangian (material) coordinates to...

d'Alembert

Euler

The people responsible for the confusion...

The people responsible for the confusion...

Lagrange

Dirichlet

(See footnote in Truesdell, The Kinematics of Vorticity.)

The Map

We consider a diffeomorphism of the 2-torus $\mathbb{T}^2 = [0, 1]^2$,

$$\mathcal{M}(\boldsymbol{x}) = \mathbb{M} \cdot \boldsymbol{x} + \phi(\boldsymbol{x}),$$

where

$$\mathbb{M} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}; \qquad \phi(\mathbf{x}) = \frac{\varepsilon}{2\pi} \begin{pmatrix} \sin 2\pi x_1 \\ \sin 2\pi x_1 \end{pmatrix};$$

 $\mathbb{M} \cdot x$ is the Arnold cat map.

The map \mathcal{M} is area-preserving and chaotic.

For $\varepsilon = 0$ the stretching of fluid elements is homogeneous in space.

For small ε the system is still uniformly hyperbolic.

Advection and Diffusion: Eulerian Viewpoint

Iterate the map and apply the heat operator to a scalar field (which we call temperature for concreteness) distribution $\theta^{(i-1)}(x)$,

$$\theta^{(i)}(\boldsymbol{x}) = \mathcal{H}_{\kappa} \, \theta^{(i-1)}(\mathcal{M}^{-1}(\boldsymbol{x}))$$

where κ is the diffusivity, with the heat operator \mathcal{H}_{κ} and kernel h_{κ}

$$\mathcal{H}_{\kappa}\theta(\boldsymbol{x}) := \int_{\mathbb{T}^2} h_{\kappa}(\boldsymbol{x} - \boldsymbol{y})\theta(\boldsymbol{y}) \, d\boldsymbol{y};$$
$$h_{\kappa}(\boldsymbol{x}) = \sum_{\boldsymbol{k}} \exp(2\pi \mathrm{i}\boldsymbol{k} \cdot \boldsymbol{x} - \boldsymbol{k}^2 \kappa).$$

In other words: advect instantaneously and then diffuse for one unit of time.

In the absence of diffusion ($\kappa = 0$) the variance $\sigma^{(i)}$

$$\sigma^{(i)} := \int_{\mathbb{T}^2} \left| \theta^{(i)}(\boldsymbol{x}) \right|^2 d\boldsymbol{x} = \sum_{\boldsymbol{k}} \sigma_{\boldsymbol{k}}^{(i)}, \qquad \sigma_{\boldsymbol{k}}^{(i)} := \left| \hat{\theta}_{\boldsymbol{k}}^{(i)} \right|^2$$

is preserved. (We assume the spatial mean of θ is zero.) For $\kappa > 0$ the variance decays.

We consider the case $\kappa \ll 1$, of greatest practical interest.

In the absence of diffusion ($\kappa = 0$) the variance $\sigma^{(i)}$

$$\sigma^{(i)} := \int_{\mathbb{T}^2} \left| \theta^{(i)}(\boldsymbol{x}) \right|^2 d\boldsymbol{x} = \sum_{\boldsymbol{k}} \sigma_{\boldsymbol{k}}^{(i)}, \qquad \sigma_{\boldsymbol{k}}^{(i)} := \left| \hat{\theta}_{\boldsymbol{k}}^{(i)} \right|^2$$

is preserved. (We assume the spatial mean of θ is zero.) For $\kappa > 0$ the variance decays.

We consider the case $\kappa \ll 1$, of greatest practical interest. Three phases:

• The variance is initially constant;

In the absence of diffusion ($\kappa = 0$) the variance $\sigma^{(i)}$

$$\sigma^{(i)} := \int_{\mathbb{T}^2} \left| \theta^{(i)}(\boldsymbol{x}) \right|^2 d\boldsymbol{x} = \sum_{\boldsymbol{k}} \sigma_{\boldsymbol{k}}^{(i)}, \qquad \sigma_{\boldsymbol{k}}^{(i)} := \left| \hat{\theta}_{\boldsymbol{k}}^{(i)} \right|^2$$

is preserved. (We assume the spatial mean of θ is zero.) For $\kappa > 0$ the variance decays.

We consider the case $\kappa \ll 1$, of greatest practical interest. Three phases:

- The variance is initially constant;
- It then undergoes a rapid superexponential decay;

In the absence of diffusion ($\kappa = 0$) the variance $\sigma^{(i)}$

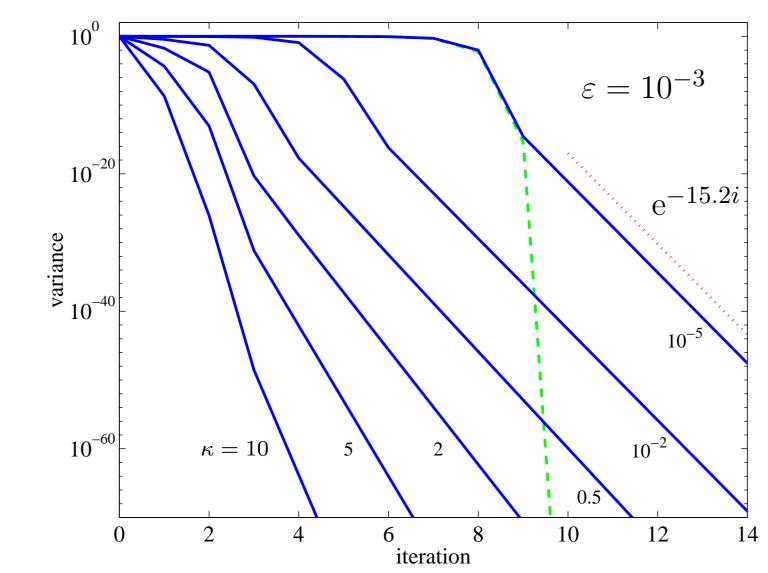
$$\sigma^{(i)} := \int_{\mathbb{T}^2} \left| \theta^{(i)}(\boldsymbol{x}) \right|^2 d\boldsymbol{x} = \sum_{\boldsymbol{k}} \sigma_{\boldsymbol{k}}^{(i)}, \qquad \sigma_{\boldsymbol{k}}^{(i)} := \left| \hat{\theta}_{\boldsymbol{k}}^{(i)} \right|^2$$

is preserved. (We assume the spatial mean of θ is zero.) For $\kappa > 0$ the variance decays.

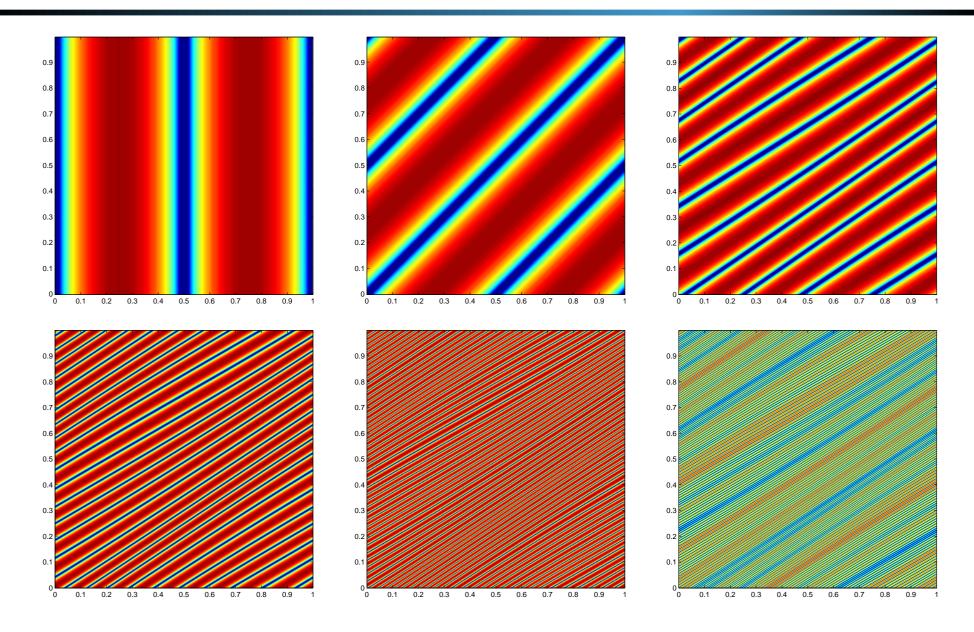
We consider the case $\kappa \ll 1$, of greatest practical interest. Three phases:

- The variance is initially constant;
- It then undergoes a rapid superexponential decay;
- $\theta^{(i)}$ settles into an eigenfunction of the A–D operator that sets the exponential decay rate.

Decay of Variance

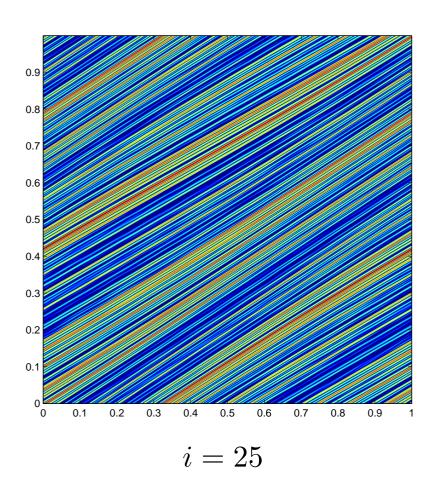


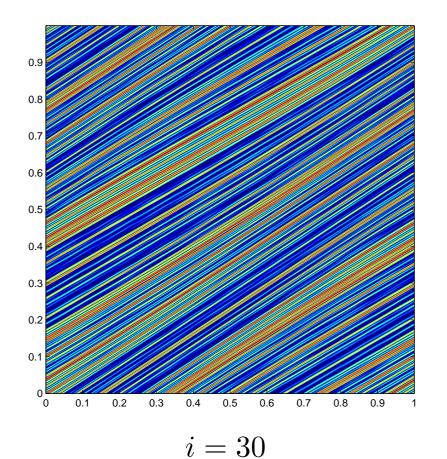
Variance: 5 iterations for $\varepsilon = 0.3$ and $\kappa = 10^{-3}$



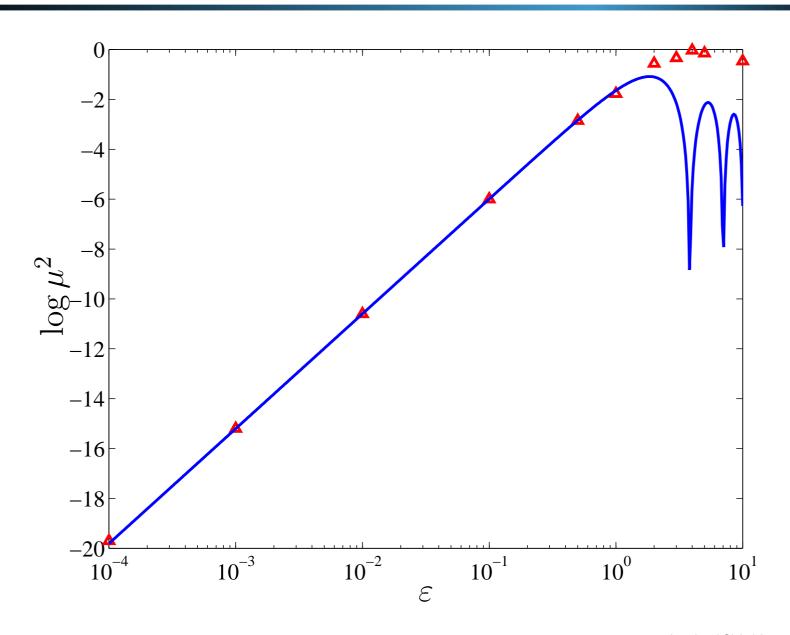
Eigenfunction for $\varepsilon=0.3$ and $\kappa=10^{-3}$

(Renormalised by decay rate)





Decay Rate as $\kappa \to 0$



• Puzzle: Superexponential decay in Lagrangian coordinates.

- Puzzle: Superexponential decay in Lagrangian coordinates.
- Fix this by averaging over initial conditions: local argument (Antonsen *et al.*, 1996). No "pattern" possible.

- Puzzle: Superexponential decay in Lagrangian coordinates.
- Fix this by averaging over initial conditions: local argument (Antonsen *et al.*, 1996). No "pattern" possible.
- How to reconcile? Try to do analytically as far as feasible, for our map with small ε .

- Puzzle: Superexponential decay in Lagrangian coordinates.
- Fix this by averaging over initial conditions: local argument (Antonsen *et al.*, 1996). No "pattern" possible.
- How to reconcile? Try to do analytically as far as feasible, for our map with small ε .
- Discover what large-scale eigenfunction looks like in Lagrangian coordinates (hint: they are not eigenfunctions!).

- Puzzle: Superexponential decay in Lagrangian coordinates.
- Fix this by averaging over initial conditions: local argument (Antonsen *et al.*, 1996). No "pattern" possible.
- How to reconcile? Try to do analytically as far as feasible, for our map with small ε .
- Discover what large-scale eigenfunction looks like in Lagrangian coordinates (hint: they are not eigenfunctions!).
- Why do this? The two viewpoints are a priori unrelated, because they for these highly-chaotic systems they are connected by an extremely convoluted (*i.e.*, inaccessible) transformation!

- Puzzle: Superexponential decay in Lagrangian coordinates.
- Fix this by averaging over initial conditions: local argument (Antonsen *et al.*, 1996). No "pattern" possible.
- How to reconcile? Try to do analytically as far as feasible, for our map with small ε .
- Discover what large-scale eigenfunction looks like in Lagrangian coordinates (hint: they are not eigenfunctions!).
- Why do this? The two viewpoints are a priori unrelated, because they for these highly-chaotic systems they are connected by an extremely convoluted (*i.e.*, inaccessible) transformation!
- But must give same answer for a scalar quantity like the decay rate.

Advection and Diffusion: Eulerian to Lagrangian

Advection-diffusion (A–D) equation:

$$\partial_t \theta + \boldsymbol{v} \cdot \partial_{\boldsymbol{x}} \theta = \widetilde{\kappa} \, \partial_{\boldsymbol{x}}^2 \theta.$$

Advection and Diffusion: Eulerian to Lagrangian

Advection-diffusion (A–D) equation:

$$\partial_t \theta + \boldsymbol{v} \cdot \partial_{\boldsymbol{x}} \theta = \widetilde{\kappa} \, \partial_{\boldsymbol{x}}^2 \theta.$$

We define Lagrangian coordinates X by

$$\dot{\boldsymbol{x}} = \boldsymbol{v}(\boldsymbol{x}, t), \qquad \boldsymbol{x}(0) = \boldsymbol{X}.$$

Advection and Diffusion: Eulerian to Lagrangian

Advection-diffusion (A–D) equation:

$$\partial_t \theta + \boldsymbol{v} \cdot \partial_{\boldsymbol{x}} \theta = \widetilde{\kappa} \, \partial_{\boldsymbol{x}}^2 \theta.$$

We define Lagrangian coordinates X by

$$\dot{\boldsymbol{x}} = \boldsymbol{v}(\boldsymbol{x}, t), \qquad \boldsymbol{x}(0) = \boldsymbol{X}.$$

Transform A–D equation to Lagrangian coordinates,

$$\dot{\theta} = \partial_{\mathbf{X}}(\mathbb{D} \cdot \partial_{\mathbf{X}}\theta).$$

Anisotropic diffusion tensor, in terms of metric or Cauchy–Green strain tensor:

$$\mathbb{D} := \widetilde{\kappa} g^{-1}; \qquad g_{pq} := \sum_{i} \frac{\partial x^{i}}{\partial X^{p}} \frac{\partial x^{i}}{\partial X^{q}}.$$

From Flow to Map

Velocity field doesn't enter the Lagrangian equation directly: regard the time dependence in \mathbb{D} as given by map rather than flow.

The solution of the A–D equation in Fourier space is then

$$\hat{\theta}_{k}^{(i)} = \sum_{\ell} \exp(\mathcal{G}^{(i)})_{k\ell} \hat{\theta}_{\ell}^{(i-1)},$$

where i denotes the ith iterate of the map, and

$$\mathcal{G}_{\boldsymbol{k}\boldsymbol{\ell}}^{(i)} = -4\pi^2 T \int_{\mathbb{T}^2} (\boldsymbol{k} \cdot \mathbb{D}^{(i)} \cdot \boldsymbol{\ell}) e^{-2\pi i (\boldsymbol{k} - \boldsymbol{\ell}) \cdot \boldsymbol{X}} d^2 X.$$

From Flow to Map

Velocity field doesn't enter the Lagrangian equation directly: regard the time dependence in \mathbb{D} as given by map rather than flow.

The solution of the A–D equation in Fourier space is then

$$\hat{\theta}_{k}^{(i)} = \sum_{\ell} \exp(\mathcal{G}^{(i)})_{k\ell} \hat{\theta}_{\ell}^{(i-1)},$$

where i denotes the ith iterate of the map, and

$$\mathcal{G}_{\boldsymbol{k}\boldsymbol{\ell}}^{(i)} = -4\pi^2 T \int_{\mathbb{T}^2} (\boldsymbol{k} \cdot \mathbb{D}^{(i)} \cdot \boldsymbol{\ell}) e^{-2\pi i (\boldsymbol{k} - \boldsymbol{\ell}) \cdot \boldsymbol{X}} d^2 X.$$

This is an exact result, but the great difficulty lies in calculating the exponential of $\mathcal{G}^{(i)}$. We shall accomplish this perturbatively.

Back to the Beginning

$$\mathcal{M}(\boldsymbol{x}) = \mathbb{M} \cdot \boldsymbol{x} + \boldsymbol{\phi}(\boldsymbol{x}),$$

$$\mathbb{M} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}; \qquad \phi(\mathbf{x}) = \frac{\varepsilon}{2\pi} \begin{pmatrix} \sin 2\pi x_1 \\ \sin 2\pi x_1 \end{pmatrix};$$

The eigenvalues of M are

$$\Lambda_{\rm u} = \Lambda = \frac{1}{2}(3 + \sqrt{5}) = \cot^2 \theta, \quad \Lambda_{\rm s} = \Lambda^{-1} = \frac{1}{2}(3 - \sqrt{5}) = \tan^2 \theta$$

and the corresponding eigenvectors,

$$(\hat{\mathbf{u}} \ \hat{\mathbf{s}}) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

Back to the Beginning

$$\mathcal{M}(\boldsymbol{x}) = \mathbb{M} \cdot \boldsymbol{x} + \boldsymbol{\phi}(\boldsymbol{x}),$$

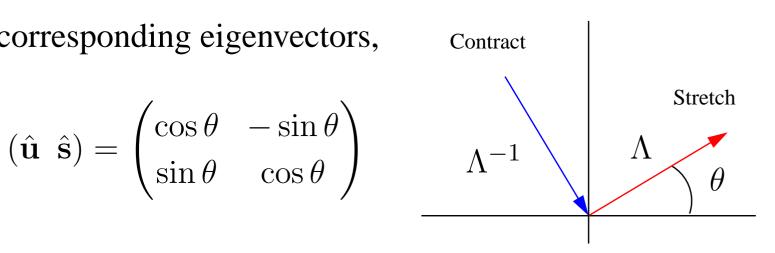
$$\mathbb{M} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}; \qquad \phi(\mathbf{x}) = \frac{\varepsilon}{2\pi} \begin{pmatrix} \sin 2\pi x_1 \\ \sin 2\pi x_1 \end{pmatrix};$$

The eigenvalues of M are

$$\Lambda_{\rm u} = \Lambda = \frac{1}{2}(3 + \sqrt{5}) = \cot^2 \theta, \quad \Lambda_{\rm s} = \Lambda^{-1} = \frac{1}{2}(3 - \sqrt{5}) = \tan^2 \theta$$

and the corresponding eigenvectors,

$$(\hat{\mathbf{u}} \ \hat{\mathbf{s}}) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$



Coefficients of Expansion: Perturbation Theory

The coefficients of expansion and characteristic directions for the linear cat map are uniform in space. Perturb off this.

To leading order in ε , the coefficient of expansion is written as

$$\Lambda_{\varepsilon}^{(i)} = \Lambda^i \left(1 + \varepsilon \, \eta^{(i)} \right)$$

where Λ is the coefficient of expansion for the unperturbed cat map; the perturbed eigenvectors are similarly written

$$\hat{\mathbf{u}}_{\varepsilon}^{(i)} = \hat{\mathbf{u}} + \varepsilon \, \zeta^{(i)} \, \hat{\mathbf{s}} \,, \qquad \hat{\mathbf{s}}_{\varepsilon}^{(i)} = \hat{\mathbf{s}} - \varepsilon \, \zeta^{(i)} \, \hat{\mathbf{u}} \,.$$

Coefficients of Expansion: Perturbation Theory

The coefficients of expansion and characteristic directions for the linear cat map are uniform in space. Perturb off this.

To leading order in ε , the coefficient of expansion is written as

$$\Lambda_{\varepsilon}^{(i)} = \Lambda^{i} \left(1 + \varepsilon \, \eta^{(i)} \right)$$

where Λ is the coefficient of expansion for the unperturbed cat map; the perturbed eigenvectors are similarly written

$$\hat{\mathbf{u}}_{\varepsilon}^{(i)} = \hat{\mathbf{u}} + \varepsilon \zeta^{(i)} \hat{\mathbf{s}}, \qquad \hat{\mathbf{s}}_{\varepsilon}^{(i)} = \hat{\mathbf{s}} - \varepsilon \zeta^{(i)} \hat{\mathbf{u}}.$$

Simple application of matrix perturbation theory to Jacobian matrix of the map. The symmetrised Jacobian is the metric:

$$g_{\varepsilon}^{(i)} = [\Lambda_{\varepsilon}^{(i)}]^2 \,\hat{\mathbf{u}}_{\varepsilon}^{(i)} \hat{\mathbf{u}}_{\varepsilon}^{(i)} + [\Lambda_{\varepsilon}^{(i)}]^{-2} \,\hat{\mathbf{s}}_{\varepsilon}^{(i)} \hat{\mathbf{s}}_{\varepsilon}^{(i)}.$$

$$\mathbb{D}^{(i)} = \kappa \left[g_{\varepsilon}^{(i)} \right]^{-1}; \qquad \left[g_{\varepsilon}^{(i)} \right]^{-1} = \left[\Lambda_{\varepsilon}^{(i)} \right]^{2} \hat{\mathbf{s}}_{\varepsilon}^{(i)} \hat{\mathbf{s}}_{\varepsilon}^{(i)} + \left[\Lambda_{\varepsilon}^{(i)} \right]^{-2} \hat{\mathbf{u}}_{\varepsilon}^{(i)} \hat{\mathbf{u}}_{\varepsilon}^{(i)}.$$

To leading order in ε , we have

$$[g_{\varepsilon}^{(i)}]^{-1} = \Lambda^{2i} \,\hat{\mathbf{s}} \,\hat{\mathbf{s}} + \Lambda^{-2i} \,\hat{\mathbf{u}} \,\hat{\mathbf{u}} + 2\varepsilon \,\eta^{(i)} (\Lambda^{2i} \,\hat{\mathbf{s}} \,\hat{\mathbf{s}} - \Lambda^{-2i} \,\hat{\mathbf{u}} \,\hat{\mathbf{u}})$$
$$-\varepsilon \,\zeta^{(i)} \, (\Lambda^{2i} - \Lambda^{-2i}) \,(\hat{\mathbf{u}} \,\hat{\mathbf{s}} + \hat{\mathbf{s}} \,\hat{\mathbf{u}}),$$

where the only functions of \boldsymbol{X} are $\eta^{(i)}$ and $\zeta^{(i)}$.

$$\mathbb{D}^{(i)} = \kappa \left[g_{\varepsilon}^{(i)} \right]^{-1}; \qquad \left[g_{\varepsilon}^{(i)} \right]^{-1} = \left[\Lambda_{\varepsilon}^{(i)} \right]^{2} \hat{\mathbf{s}}_{\varepsilon}^{(i)} \hat{\mathbf{s}}_{\varepsilon}^{(i)} + \left[\Lambda_{\varepsilon}^{(i)} \right]^{-2} \hat{\mathbf{u}}_{\varepsilon}^{(i)} \hat{\mathbf{u}}_{\varepsilon}^{(i)}.$$

To leading order in ε , we have

$$[g_{\varepsilon}^{(i)}]^{-1} = \Lambda^{2i} \,\hat{\mathbf{s}} \,\hat{\mathbf{s}} + \Lambda^{-2i} \,\hat{\mathbf{u}} \,\hat{\mathbf{u}} + 2\varepsilon \,\eta^{(i)} (\Lambda^{2i} \,\hat{\mathbf{s}} \,\hat{\mathbf{s}} - \Lambda^{-2i} \,\hat{\mathbf{u}} \,\hat{\mathbf{u}})$$
$$-\varepsilon \,\zeta^{(i)} \, (\Lambda^{2i} - \Lambda^{-2i}) \,(\hat{\mathbf{u}} \,\hat{\mathbf{s}} + \hat{\mathbf{s}} \,\hat{\mathbf{u}}),$$

where the only functions of X are $\eta^{(i)}$ and $\zeta^{(i)}$.

Recall the solution to the A–D equation:

$$\hat{\theta}_{k}^{(i)} = \sum_{\ell} \exp(\mathcal{G}^{(i)})_{k\ell} \hat{\theta}_{\ell}^{(i-1)}$$
.

$$\mathcal{G}_{\boldsymbol{k}\boldsymbol{\ell}}^{(i)} = -4\pi^2 T \int_{\mathbb{T}^2} (\boldsymbol{k} \cdot \mathbb{D}^{(i)} \cdot \boldsymbol{\ell}) e^{-2\pi i (\boldsymbol{k} - \boldsymbol{\ell}) \cdot \boldsymbol{X}} d^2 X$$
$$= A_{\boldsymbol{k}\boldsymbol{\ell}}^{(i)} + \varepsilon B_{\boldsymbol{k}\boldsymbol{\ell}}^{(i)}$$

$$\mathcal{G}_{\boldsymbol{k}\boldsymbol{\ell}}^{(i)} = -4\pi^2 T \int_{\mathbb{T}^2} (\boldsymbol{k} \cdot \mathbb{D}^{(i)} \cdot \boldsymbol{\ell}) e^{-2\pi i (\boldsymbol{k} - \boldsymbol{\ell}) \cdot \boldsymbol{X}} d^2 X$$
$$= A_{\boldsymbol{k}\boldsymbol{\ell}}^{(i)} + \varepsilon B_{\boldsymbol{k}\boldsymbol{\ell}}^{(i)}$$

where

$$A_{k\ell}^{(i)} = -\kappa \left(\Lambda^{2i} k_s^2 + \Lambda^{-2i} k_u^2 \right) \delta_{k\ell}, \qquad \kappa := 4\pi^2 \widetilde{\kappa} T$$

$$B_{\boldsymbol{k}\boldsymbol{\ell}}^{(i)} = -\kappa \left(2 \left(\Lambda^{2i} \, k_{\mathrm{s}} \, \ell_{\mathrm{s}} - \Lambda^{-2i} \, k_{\mathrm{u}} \, \ell_{\mathrm{u}} \right) \, \eta_{\boldsymbol{k}\boldsymbol{\ell}}^{(i)} - \left(k_{\mathrm{u}} \, \ell_{\mathrm{s}} + k_{\mathrm{s}} \, \ell_{\mathrm{u}} \right) \left(\zeta_{+}^{(i)} \, \boldsymbol{k}\boldsymbol{\ell} + \zeta_{-}^{(i)} \, \boldsymbol{k}\boldsymbol{\ell} \right) \right).$$

with $k_{\mathbf{u}} := (\mathbf{k} \cdot \hat{\mathbf{u}}), k_{\mathbf{s}} := (\mathbf{k} \cdot \hat{\mathbf{s}}).$

The Exponent $\mathcal{G}^{(i)} = A^{(i)} + \varepsilon B^{(i)}$ (cont'd)

The diagonal part, $A^{(i)}$, inexorably leads to superexponential decay of variance, because it grows exponentially.

Upon making use of the Fourier-transformed $\zeta^{(i)}$ and $\eta^{(i)}$, we find

$$B_{\boldsymbol{k}\boldsymbol{\ell}}^{(i)} = -\frac{1}{2}\kappa \sum_{j=0}^{i-1} \mathcal{B}_{\boldsymbol{k}\boldsymbol{\ell}}^{ij} \left(\delta_{\boldsymbol{k},\boldsymbol{\ell}+\hat{\mathbf{e}}_1\cdot\mathbb{M}^j} + \delta_{\boldsymbol{k},\boldsymbol{\ell}-\hat{\mathbf{e}}_1\cdot\mathbb{M}^j} \right)$$

$$\mathcal{B}_{k\ell}^{ij} = \sin 2\theta \left(\Lambda^{2i} k_{s} \ell_{s} - \Lambda^{-2i} k_{u} \ell_{u} \right)$$

$$+ \left(k_{u} \ell_{s} + k_{s} \ell_{u} \right) \left(\Lambda^{2(i-j)} \sin^{2} \theta - \Lambda^{-2(i-j)} \cos^{2} \theta \right).$$

So $B^{(i)}$ is not diagonal (it couples different modes to each other).

⇒ Dispersive in Fourier space.

But can we Compute the Exponential, $\exp(\mathcal{G}^{(i)})$?

To leading order in ε , for A diagonal, we have $\mathcal{G}^{(i)} = A^{(i)} + \varepsilon B^{(i)}$,

$$[\exp(A^{(i)} + \varepsilon B^{(i)})]_{k\ell} = e^{A_{kk}^{(i)}} \delta_{k\ell} + \varepsilon E_{k\ell}^{(i)}; \quad E_{k\ell}^{(i)} = B_{k\ell}^{(i)} \frac{e^{A_{kk}^{(i)}} - e^{A_{\ell\ell}^{(i)}}}{A_{kk}^{(i)} - A_{\ell\ell}^{(i)}}.$$

• From Eulerian considerations, we know we must avoid superexponential decay of $\theta^{(i)}$ for long times.

But can we Compute the Exponential, $\exp(\mathcal{G}^{(i)})$?

To leading order in ε , for A diagonal, we have $\mathcal{G}^{(i)} = A^{(i)} + \varepsilon B^{(i)}$,

$$[\exp(A^{(i)} + \varepsilon B^{(i)})]_{\boldsymbol{k}\boldsymbol{\ell}} = e^{A_{\boldsymbol{k}\boldsymbol{k}}^{(i)}} \delta_{\boldsymbol{k}\boldsymbol{\ell}} + \varepsilon E_{\boldsymbol{k}\boldsymbol{\ell}}^{(i)}; \quad E_{\boldsymbol{k}\boldsymbol{\ell}}^{(i)} = B_{\boldsymbol{k}\boldsymbol{\ell}}^{(i)} \frac{e^{A_{\boldsymbol{k}\boldsymbol{k}}^{(i)}} - e^{A_{\boldsymbol{\ell}\boldsymbol{\ell}}^{(i)}}}{A_{\boldsymbol{k}\boldsymbol{k}}^{(i)} - A_{\boldsymbol{\ell}\boldsymbol{\ell}}^{(i)}}.$$

- From Eulerian considerations, we know we must avoid superexponential decay of $\theta^{(i)}$ for long times.
- However, the Λ^{2i} term in $A_{kk}^{(i)}$ precludes any optimism about the situation: it dooms us to a grim superexponential death.

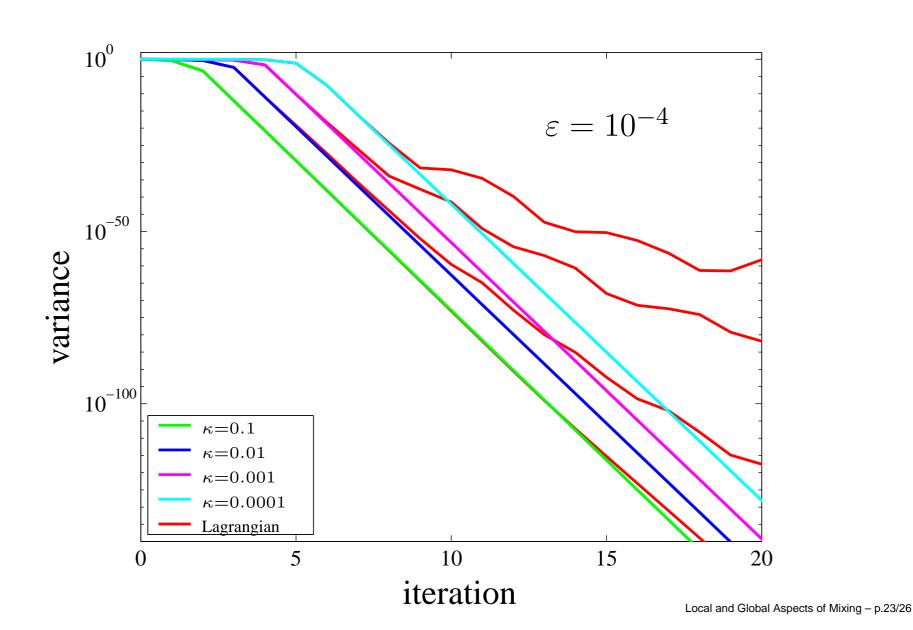
But can we Compute the Exponential, $\exp(\mathcal{G}^{(i)})$?

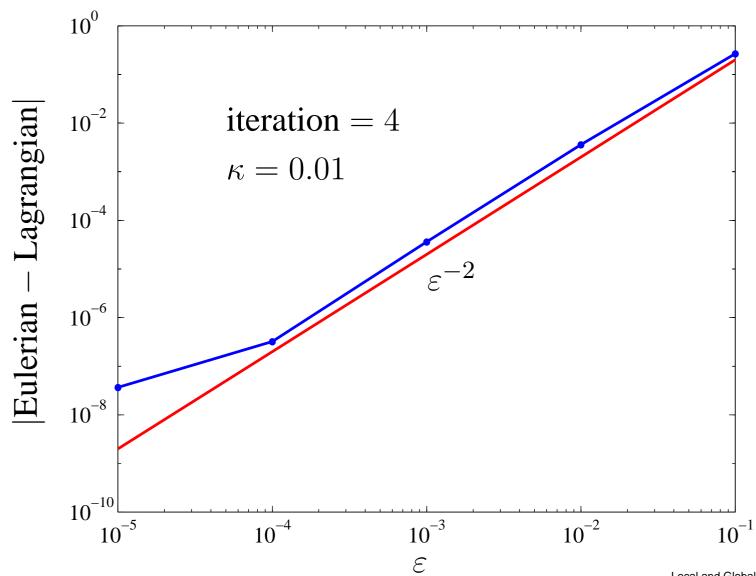
To leading order in ε , for A diagonal, we have $\mathcal{G}^{(i)} = A^{(i)} + \varepsilon B^{(i)}$,

$$[\exp(A^{(i)} + \varepsilon B^{(i)})]_{k\ell} = e^{A_{kk}^{(i)}} \delta_{k\ell} + \varepsilon E_{k\ell}^{(i)}; \quad E_{k\ell}^{(i)} = B_{k\ell}^{(i)} \frac{e^{A_{kk}^{(i)}} - e^{A_{\ell\ell}^{(i)}}}{A_{kk}^{(i)} - A_{\ell\ell}^{(i)}}.$$

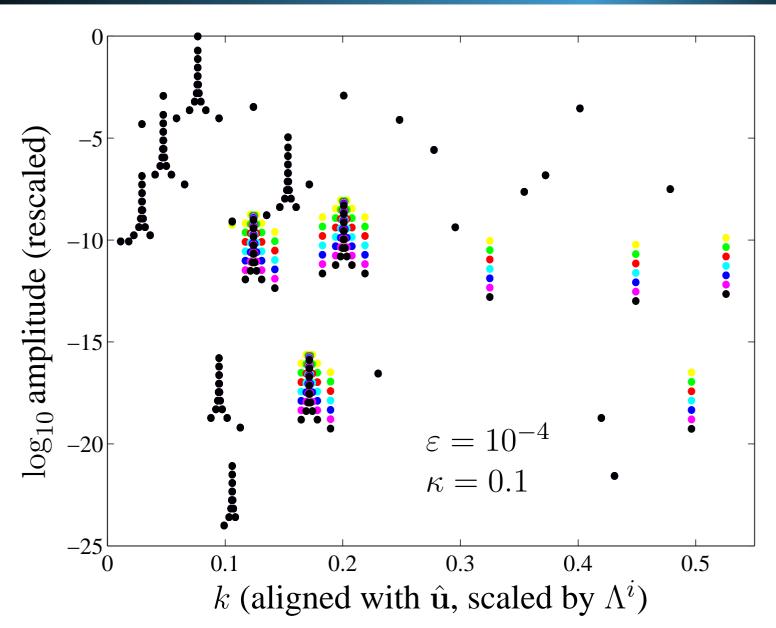
- From Eulerian considerations, we know we must avoid superexponential decay of $\theta^{(i)}$ for long times.
- However, the Λ^{2i} term in $A_{kk}^{(i)}$ precludes any optimism about the situation: it dooms us to a grim superexponential death.
- For $\varepsilon = 0$, this is indeed what happens. But for a finite value of ε , the E term breaks the diagonality of \mathcal{G} , so that given some initial set of wavevectors, the variance contained in those modes can be transferred elsewhere.

Comparison: Eulerian and Lagrangian Views





Rescaled Pattern for $i = 6, \dots, 12$



• In the Eulerian view, large-scale eigenmode dominates exponential phase, as for baker's map.

- In the Eulerian view, large-scale eigenmode dominates exponential phase, as for baker's map.
- Global structure matters!

- In the Eulerian view, large-scale eigenmode dominates exponential phase, as for baker's map.
- Global structure matters!
- It is not possible to simply transform the Eulerian result to Lagrangian coordinates, since orbits are chaotic . . . must solve Lagrangian problem from the start.

- In the Eulerian view, large-scale eigenmode dominates exponential phase, as for baker's map.
- Global structure matters!
- It is not possible to simply transform the Eulerian result to Lagrangian coordinates, since orbits are chaotic ... must solve Lagrangian problem from the start.
- There exists a kind of pattern in Lagrangian coordinates (not eigenfunction) that is cascading to large wavenumbers. Lives inside the cone of safety.

- In the Eulerian view, large-scale eigenmode dominates exponential phase, as for baker's map.
- Global structure matters!
- It is not possible to simply transform the Eulerian result to Lagrangian coordinates, since orbits are chaotic ... must solve Lagrangian problem from the start.
- There exists a kind of pattern in Lagrangian coordinates (not eigenfunction) that is cascading to large wavenumbers. Lives inside the cone of safety.
- The decay rate is not set by the rate of shrinking of the cone, as in local theories, but by transfer within the cone.

- In the Eulerian view, large-scale eigenmode dominates exponential phase, as for baker's map.
- Global structure matters!
- It is not possible to simply transform the Eulerian result to Lagrangian coordinates, since orbits are chaotic ... must solve Lagrangian problem from the start.
- There exists a kind of pattern in Lagrangian coordinates (not eigenfunction) that is cascading to large wavenumbers. Lives inside the cone of safety.
- The decay rate is not set by the rate of shrinking of the cone, as in local theories, but by transfer within the cone.
- The perturbation expansions breaks down fairly quickly: cannot address controversial long-time issues.

- In the Eulerian view, large-scale eigenmode dominates exponential phase, as for baker's map.
- Global structure matters!
- It is not possible to simply transform the Eulerian result to Lagrangian coordinates, since orbits are chaotic ... must solve Lagrangian problem from the start.
- There exists a kind of pattern in Lagrangian coordinates (not eigenfunction) that is cascading to large wavenumbers. Lives inside the cone of safety.
- The decay rate is not set by the rate of shrinking of the cone, as in local theories, but by transfer within the cone.
- The perturbation expansions breaks down fairly quickly: cannot address controversial long-time issues.