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Experiment of Rothstein et al.: Persistent Pattern

Disordered array of
magnets with oscilla-
tory current drive a
thin layer of elec-
trolytic solution.

periods 2, 20, 50, 50.5

[Rothstein, Henry, and Gollub,
Nature 401, 770 (1999)]
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Evolution of Pattern

e “Striations™
e Smoothed by diffusion
e Eventually settles into “pattern” (eigenfunction)
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Local vs Global Regimes of Mixing

Local theory:

e Based on distribution of Lyapunov exponents.
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Local vs Global Regimes of Mixing

Local theory:

e Based on distribution of Lyapunov exponents.

e [Antonsen et al., Phys. Fluids (1996)] Average over angles
‘Balkovsky and Fouxon, PRE (1999)] Statistical model
'Son, PRE (1999)] Statistical model

Global theory:
* Eigenfunction of advection—diffusion operator.

* [Pierrehumbert, Chaos Sol. Frac. (1994)] Strange eigenmode
[Fereday et al., Wonhas and Vassilicos, PRE (2002)] Baker’s map
| Sukhatme and Pierrenumbert, PRE (2002)]

[Fereday and Haynes (2003)] Unified description
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Local vs Global Regimes of Mixing

Local theory:

e Based on distribution of Lyapunov exponents.

e [Antonsen et al., Phys. Fluids (1996)] Average over angles
Balkovsky and Fouxon, PRE (1999)] Statistical model
'Son, PRE (1999)] Statistical model

Global theory:
* Eigenfunction of advection—diffusion operator.

e So far, local theories are Lagrangian and global theories are
Eulerian.

e Today: Try to connect the two pictures.
e Cannot often do this! Map allows (mostly) analytical results.

Local and Global Aspects of Mixing — p.4/26



A Bit of History

Eulerian (spatial) coordinates are due to. ..
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A Bit of History

Eulerian (spatial) coordinates are due to. ..

d’AIembert
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A Bit of History

...and Lagrangian (material) coordinates to...

d’Alembert
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The people responsible for the confusion. ..
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The people responsible for the confusion. ..

Lagrange Dirichlet

(See footnote in Truesdell, The Kinematics of \orticity.)
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The Map

We consider a diffeomorphism of the 2-torus T = [0, 1]?,

M(x) =M -z + ¢(x),

2 1 e [sin2mxq
M = ; o(x)=—1 . ;
1 1 2w \ sin 27z

M - z Is the Arnold cat map.

where

The map M is area-preserving and chaotic.

For ¢ = 0 the stretching of fluid elements Is homogeneous in
space.

For small ¢ the system is still uniformly hyperbolic.
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Advection and Diffusion: Eulerian Viewpoint

Iterate the map and apply the heat operator to a scalar field (which
we call temperature for concreteness) distribution 60— (a),

0 (@) = Hy 68D (M ()

where x is the diffusivity, with the heat operator H,. and kernel A,

Hob(e) = [ hule — y)6ly) dy;

he(w) =) exp(2rik - @ — k*K).
k

In other words: advect instantaneously and then diffuse for one
unit of time.
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Variance: A Measure of Mixing

In the absence of diffusion (x = 0) the variance o(¥

A ’9(75)(:13)‘2 de = Z O'](j), ag) =
T2 L

Is preserved.  (We assume the spatial mean of 6 Is zero.)
For « > 0 the variance decays.

We consider the case « < 1, of greatest practical interest.
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Variance: A Measure of Mixing

In the absence of diffusion (x = 0) the variance o(¥

o) = ’9(75)(:13)‘2 de = Z O'](j), JS) =
T2 L

Is preserved.  (We assume the spatial mean of 6 Is zero.)
For « > 0 the variance decays.

We consider the case « < 1, of greatest practical interest.
Three phases:

* The variance Is initially constant;
* |t then undergoes a rapid superexponential decay;

* 9l settles into an eigenfunction of the A-D operator that sets
the exponentlal decay rate Local and Global Aspects of Mixing — p.9/26
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iterations fore = 0.3and x = 10°
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Eigenfunction fore = 0.3 and x = 107?

(Renormalised by decay rate)




Decay Rate as x — 0
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Lagrangian Viewpoint

e Puzzle: Superexponential decay in Lagrangian coordinates.
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e Puzzle: Superexponential decay in Lagrangian coordinates.

* Fix this by averaging over initial conditions: local argument
(Antonsen et al., 1996). No “pattern” possible.
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* How to reconcile? Try to do analytically as far as feasible, for
our map with small ¢.

e Discover what large-scale eigenfunction looks like in
Lagrangian coordinates (hint: they are not eigenfunctions!).

e Why do this? The two viewpoints are a priori unrelated,
because they for these highly-chaotic systems they are
connected by an extremely convoluted (i.e., Inaccessible)
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Lagrangian Viewpoint

e Puzzle: Superexponential decay in Lagrangian coordinates.

* Fix this by averaging over initial conditions: local argument
(Antonsen et al., 1996). No “pattern” possible.

* How to reconcile? Try to do analytically as far as feasible, for
our map with small ¢.

e Discover what large-scale eigenfunction looks like in
Lagrangian coordinates (hint: they are not eigenfunctions!).

e Why do this? The two viewpoints are a priori unrelated,
because they for these highly-chaotic systems they are
connected by an extremely convoluted (i.e., Inaccessible)
transformation!

e But must give same answer for a scalar quantity like the
decay rate.

Local and Global Aspects of Mixing — p.14/26



Advection and Diffusion: Eulerian to Lagrangian

Advection-diffusion (A-D) equation:

010 + v - 0,0 = K O%0.
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Advection and Diffusion: Eulerian to Lagrangian

Advection-diffusion (A-D) equation:
010 + v - 050 = K 026,
We define Lagrangian coordinates X by

x = v(x,t), x(0) = X.
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Advection and Diffusion: Eulerian to Lagrangian

Advection-diffusion (A-D) equation:
010 + v - 0,0 = K O%0.
We define Lagrangian coordinates X by
= v(x,t), x(0) = X.
Transform A-D equation to Lagrangian coordinates,
0 = 0x(D-0xb).
Anisotropic diffusion tensor, in terms of metric or Cauchy—Green

strain tensor: . .
ID) Lo~ 1. . (933@ 8332
=hrhg Ipa = i oXP 0X4
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From Flow to Map

Velocity field doesn’t enter the Lagrangian equation directly:
regard the time dependence in ID as given by map rather than flow.

The solution of the A—D equation in Fourier space is then

O =D exp(GY), 0 .
14

where i denotes the ith iterate of the map, and

G\) = —An*T / (k-DW . g)e2mk-0X g2y
T2
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From Flow to Map

Velocity field doesn’t enter the Lagrangian equation directly:
regard the time dependence in ID as given by map rather than flow.

The solution of the A—D equation in Fourier space is then
O =Y exp(G),, 00"
¢
where i denotes the ith iterate of the map, and
G\) = —4m>T /T (k- DY) o7 mETOX g2

This Is an exact result, but the great difficulty lies in calculating
the exponential of G(). We shall accomplish this perturbatively.
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Back to the Beginning

M(x) =M x + ¢(x),

2 1 e [sSin2mxy
M = . o) = | . ;
1 1 2m \ sin 27w
The eigenvalues of M are

Ay=A=3B+V5) =cot?d, As=A"'=1(3-V5) =tan?0

and the corresponding eigenvectors,

o cos —sind
(0 8) =1
sinf@ cosf@
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Back to the Beginning

2 1 e [sSin2mxy
M = . — .
(1 1) - @)= <sin 27m:1> ’
The eigenvalues of M are

Ay=A=3B+V5) =cot?d, As=A"'=1(3-V5) =tan?0

and the corresponding eigenvectors, Contract

Stretch
cos —sind
Ny B A
(a8) (sin@ cos 6 ) A 0
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Coefficients of Expansion: Perturbation Theory

The coefficients of expansion and characteristic directions for the
linear cat map are uniform in space. Perturb off this.

To leading order in ¢, the coefficient of expansion is written as
AY = AP (1 + )

where A is the coefficient of expansion for the unperturbed cat
map; the perturbed eigenvectors are similarly written

0l —arecs, s —g_ccWq.
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Coefficients of Expansion: Perturbation Theory

The coefficients of expansion and characteristic directions for the
linear cat map are uniform in space. Perturb off this.

To leading order in ¢, the coefficient of expansion is written as
AY = AP (1 + )

where A is the coefficient of expansion for the unperturbed cat
map; the perturbed eigenvectors are similarly written

0 —arec®s W gy,
Simple application of matrix perturbation theory to Jacobian
matrix of the map. The symmetrised Jacobian is the metric:
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Perturbed Metric Tensor

DO — w11 011 = ADPsD0)  AD)2D5®

To leading order in ¢, we have

[gg)] —AYss+ AP au+ 29D (A%s5 — A% an)
— e ¢ (A% — A7) (as + s0),

where the only functions of X are (") and ¢t
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Perturbed Metric Tensor

DO — w11 011 = ADPsD0)  AD)2D5®
To leading order in ¢, we have
G = A%gs + A2 aa+ 200D (A% 85 — A% ad)
— e ¢ (A% — A7) (as + s0),
where the only functions of X are »(®) and ¢

Recall the solution to the A-D equation:

=3 ew@)uli
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The Exponent G
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The Exponent G

where

AV =~k (AP R2 4+ AP RD) S, ko AR T

By = = (2(A% ko by = A= ey 0) i

— (kuls + ks ly) (Cg)ke + C@kﬁ)) :
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The Exponent G = AW + ¢ B (cont’d)

The diagonal part, A, inexorably leads to superexponential
decay of variance, because it grows exponentially.

Upon making use of the Fourier-transformed ¢(* and »®, we find

i1
(z) 1 ij
By, = —5%2 By, (Ok.ove, i + Ok.o—e, )
Jj=0

B, = sin 20 (A% kg by — A2 ky £,)
+ (ku ls + ks ly) (Aw—j) sin2 § — A~20079) g2 9) .

So B®W is not diagonal (it couples different modes to each other).
—> Dispersive In Fourier space.
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But can we Compute the Exponential, exp(G¥)?

To leading order in ¢, for A diagonal, we have G() = A(®) 4 B,

(4) (4)
eAkk — eAee

[eXp(A(Z)—FEB(Z))]kE — eAk:k; 5kg—|—€El(€2; El(cg = Bl(cg Q) Q)
Akk o AEE

 From Eulerian considerations, we know we must avoid
superexponential decay of 89 for long times.
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But can we Compute the Exponential, exp(G¥)?

To leading order in ¢, for A diagonal, we have G() = A(®) 4 B,
eAih — oAt

Ak~ Age

: ; (4) 7 7 7
[exp(A(Z)%—EB(Z))]ke — eAkk 5kg+5E,(€2; E,gg — B,(cg

 From Eulerian considerations, we know we must avoid
superexponential decay of 89 for long times.

* However, the A% term in A,(j,)c precludes any optimism about
the situation: it dooms us to a grim superexponential death.
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But can we Compute the Exponential, exp(G¥)?

To leading order in ¢, for A diagonal, we have G() = A() 4 B,

(4) (4)
eAkk — eAee

- - () 0 i 0
[exp(A(Z)+EB(Z))]k£ — oKk 5k€+5El(c£23 El(eg = Bl(-cl? 0 OB
A — A

kk 7
* From Eulerian considerations, we know we must avoid
superexponential decay of 6(¥) for long times.

* However, the A% term in A,(j,)c precludes any optimism about
the situation: it dooms us to a grim superexponential death.

* For e = 0, this Is indeed what happens. But for a finite value
of ¢, the E term breaks the diagonality of ¢, so that given
some initial set of wavevectors, the variance contained in
those modes can be transferred elsewhere.
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Comparison: Eulerian and Lagrangian Views
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Convergence

|[Eulerian — Lagrangian|
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Conclusions

* |n the Eulerian view, large-scale eigenmode dominates
exponential phase, as for baker’s map.
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