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Small vortices generated by jellyfish

Katija & Dabiri (2009)

play movie (Palau’s Jellyfish Lake.)
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Probability density of displacements

Experiments with microswimmers:

• Measure pdf of displacements
of small particles.

• Non-Gaussian pdf with
‘exponential’ tails.

• ‘Diffusive scaling’
possibly a short time effect
[Thiffeault (2015)].

[Leptos, K. C., Guasto, J. S., Gollub, J. P., Pesci, A. I., & Goldstein, R. E. (2009).

Phys. Rev. Lett. 103, 198103]
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Strategy for the probability density of displacements

• Find the full finite-path drift function ∆ for a single swimmer.

• The sum of displacements for many swimmers is the convolution of
single-swimmer displacements.

• In Fourier space (characteristic function), the convolution is a simple
product, but then have to take an inverse transform.

• Usually this inverse transform is approximated to give the Central
Limit Theorem, but we evaluate it explicitly when experimental times
are short (as in Leptos et al. (2009) — see Thiffeault (2015)).

• Care must be taken when going to the ‘thermodynamic’ limit.

• We must assume some hydrodynamic model to obtain the
single-swimmer displacements.
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Probability density of displacements for a swimmer

Finite-path drift function ∆λ(η) for a fluid particle, initially at x = η,
affected by a single swimmer moving at velocity U:

∆λ(η) =

∫ λ/U

0
u(x(s)−Us)ds, ẋ = u(x−Ut), x(0) = η .

Assuming homogeneity and isotropy, we obtain the probability density of
displacements,

pR1
λ

(r) =
1

Ω rd−1

∫
V
δ(r −∆λ(η))

dVη

V

where Ω = Ω(d) is the area of the unit sphere in d dimensions.

Here R1
λ is a random variable that gives the displacement of the particle

from its initial position after being affected by a single swimmer with path
length λ.
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Variance

The second moment (variance) of R1
λ is

〈(R1
λ)2〉 =

∫
V
r2 pR1

λ
(r) dVr =

∫
V

∆2
λ(η)

dVη

V
.

Let RN
λ be the random particle displacement due to N swimmers;

〈(RN
λ )2〉 = N〈(R1

λ)2〉 = n

∫
V

∆2
λ(η)dVη

with n = N/V the number density of swimmers.

If the integral above exists then the particle motion is diffusive after we
allow for random re-orientation of the swimmers.
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Probability density for x displacement

We integrate over y and z to get the pdf for one coordinate x only:

pX 1
λ

(x) = 1
2

∫
V

1

∆λ(η)
[∆λ(η) > |x |] dVη

V

where [A] is an indicator function: it is 1 if A is satisfied, 0 otherwise.

Now we want pXN
λ

(x), the pdf for N swimmers. The road to this is

through the characteristic function:

〈eikX 1
λ〉 =

∫ ∞
−∞

pX 1
λ

(x) eikx dx =

∫
V

sinc (k∆λ(η))
dVη

V

where sinc x := x−1 sin x .

(In 2D, replace sinc by Bessel function J0(x).)
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Characteristic function

To help integrals converge nicely later, it is better to work with

γ(x) := 1− sinc x .

Then,
〈eikX 1

λ〉 = 1− (vλ/V ) Γλ(k)

where

Γλ(k) :=
1

vλ

∫
V
γ(k∆λ(η))dVη

Here vλ is the volume ‘carved out’ by a swimmer moving a distance λ:

vλ = λσ

with σ the cross-sectional area of the swimmer in the direction of motion.
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Many swimmers

The sum of many displacements has distribution given by a convolution of
individual distributions.

The characteristic function for N swimmers is thus 〈eikXN
λ 〉 = 〈eikX 1

λ〉N :

〈eikX 1
λ〉N = (1− vλΓλ(k)/V )nV

∼ exp (−nvλ Γλ(k)) , V →∞.

where we used N = nV .

Define the number of head-on collisions for path length λ:

νλ := nvλ

We take the inverse Fourier transform of 〈eikX 1
λ〉N to finally obtain

pXλ
(x) =

1

2π

∫ ∞
−∞

exp (−νλ Γλ(k)) e−ikx dk
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A model swimmer

This is as far as we can go without introducing a model swimmer.

We take a squirmer, with axisymmetric streamfunction:

Ψsf(ρ, z) = 1
2ρ

2 U

{
−1 +

`3

(ρ2 + z2)3/2
+ 3

2

β`2z

(ρ2 + z2)3/2

(
`2

ρ2 + z2
− 1

)}
[See for example Lighthill (1952); Blake (1971); Ishikawa et al. (2006); Ishikawa &

Pedley (2007b); Drescher et al. (2009)]

We use the stresslet strength β = 0.5, which is close to a treadmiller:

U
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Comparing to Leptos et al.
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Fit the stresslet strength β = 0.5 to one curve. The only fitted parameter
is the stresslet strength β = 0.5. [Thiffeault2015]11 / 27



Comparing to Eckhardt & Zammert

Eckhardt & Zammert (2012) have a beautiful fit to the data based on a
phenomenological continuous-time random walk model (dashed):
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Our models disagree in the tails, but there is no data there.
12 / 27



Time-dependent swimmer
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Sphere-flagellum time-dependent swimmer [Peter Mueller] play movie
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http://www.math.wisc.edu/~jeanluc/movies/Darwindriftmovie_movingpFaxen2regMaul.mp4


Time-dependent swimmer: pdfs

The no-slip sphere in the time-dependent model leads to an increased
probability of large displacements and ‘lifts’ the tails of the distribution:
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This gives even better agreement with the experiments.

[Mueller & Thiffeault, preprint]
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Transport by vortices

• For the jellyfish, vortex rings are a convenient building block.

• Inviscid vortex filament: trapped region (atmosphere) leads to infinite
transport.

• Unlike 2D, velocity depends logarithmically on core size.

• We must add some viscosity to regularize:
• How far does a vortex go?
• How does the trapped region change in time?

• Use a model vortex rather than numerical solution, since we need to
go to large distances to evaluate

∫
∆2 dV .

• Some references: [Phillips (1956); Tung (1967); Maxworthy (1972); Stanaway

et al. (1988); Saffman (1992); Shariff & Leonard (1992); Dabiri & Gharib (2004);

Dabiri (2006); Shadden et al. (2006); Fukumoto & Kaplanski (2008); Fukumoto

(2010)]
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Viscous model

Equation for azimuthal component of the vorticity ζ(ρ, z , t):

∂ζ

∂t
+
∂(uρζ)

∂ρ
+
∂(uzζ)

∂z
= ν

(
∂2ζ

∂ρ2
+

1

ρ

∂ζ

∂ρ
− ζ

ρ2
+
∂2ζ

∂z2

)
The velocity components are given in terms of the
streamfunction Ψ(ρ, z , t),

uρ = −1

ρ

∂Ψ

∂z
, uz =

1

ρ

∂Ψ

∂ρ

The boundary conditions are

Ψ(0, z , t) = ζ(0, z , t) = 0

ζ ,Ψ −→ 0, as r →∞

[Fukumoto & Kaplanski (2008); Fukumoto (2010)]
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Viscous model: vortex filament

We follow Fukumoto & Kaplanski (2008) and neglect the inertial terms.
Initial condition corresponding to a vortex filament of radius ρ0 at z = 0:

ζ0(ρ, z) = Γ0 δ(ρ− ρ0) δ(z)

Solution:

ζ(ρ, z , t) =
Γ0 ρ0

4
√
π(νt)3/2

exp

(
−ρ

2 + ρ2
0 + z2

4νt

)
I1
(ρρ0

2νt

)
Notice that ζ is even in z , so the vorticity centroid

Z (t) =

∫ ∞
−∞

∫ ∞
0

ζ ρ2z dρ dz

/ ∫ ∞
−∞

∫ ∞
0

ζ ρ2 dρdz

is zero for all times.
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Viscous model: vortex motion

However, the time derivative U(t) = Ż evaluated directly using the full
equations of motion is nonzero.

Fukumoto & Kaplanski (2008) use this to estimate U(t):

U(t) =
Γ0ρ

2
0

96
√

2π(νt)3/2

{
2F2

(
3
2 ,

3
2 ; 5

2 , 3;− ρ2
0

2νt

)
− 36

5 2F2

(
3
2 ,

5
2 ; 2, 7

2 ;− ρ2
0

2νt

)
+

72νt

ρ2
0

exp
(
− ρ2

0
4νt

)
I1
(
ρ2

0
4νt

)}

This is a bit messy, but has the advantage that it’s valid for small and
large times.
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Viscous model: vortex motion (cont’d)
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A crucial fact is that U(t) decays as t−3/2, so the total vortex

displacement is finite (unlike in 2D): Z∞ ∼ 5Γ0ρ0/24πν

19 / 27



Particle drift

The Fukumoto & Kaplanski (2008) solution is (nearly) analytic, so it
allows us to
• Easily do particle advection;
• Derive far-field asymptotics (crucial!).

;
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Vortex Ring at t=0.5s (Re=300)

Re = 100 play movie Re = 200 play movie Re = 500 play movie
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http://www.math.wisc.edu/~jeanluc/movies/vortex_drift_Re100.mp4
http://www.math.wisc.edu/~jeanluc/movies/vortex_drift_Re200.mp4
http://www.math.wisc.edu/~jeanluc/movies/vortex_drift_Re500.mp4


The drift function ∆(ρ, z)

• ∆(ρ, z) is the net
particle displacement
as a function of
initial position.

• Largest displacements
come from particles
initially in the vortex.

• Broadens as particle
are entrained.

• Eventually peters out.
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Integrated squared displacement

The far-field (large r) total displacement asymptotes to

∆(r , θ) ∼ I

4πν

5 + 3 cos 2θ

r
, I = πΓ0ρ

2
0

With respect to our drift-based diffusion model, this is bad news, since the
integrated squared displacement diverges with R:∫ π

0

∫ R

0
∆2(r , θ) 2πr2 sin θ dr dθ =

24

5π

I 2R

ν2

At large distances the displacements are very small, but not small enough
for a ‘thermodynamic limit’ to make sense.

How do we choose the regularization radius R?
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Regularization of the divergence

How do we pick the regularization radius R? Two ideas:

• R is the domain size. Similar thing can happen in sedimendation
problems. Clearly nonsense in large systems.

• R =
√

4νt, where t is the age of the vortex. This is the largest radius
where particles have reached their full displacement.

• R is n−1/3, the mean distance between vortices in our ‘gas’ of vortices
with low number density n. The presence of other vortices
‘decorrelates’ (screens) the far-field displacements.

The latter sounds more sensible. It gives a prediction for the scaling of the
effective diffusivity:

D ∼ n

∫
V

∆2 dV ∼ n2/3

Ongoing work: numerical simulations to confirm or rule out this scaling.
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Conclusions

• We have a theory that works very well in explaining mixing by
microorganisms.

• Predicts effective diffusivity as well as detailed pdf of particle
displacements.

• Based on Lagrangian drift due to single ‘swimmer.’

• This should have broader applicability: try vortex rings.

• Unlike the microswimmer case, leads to divergent integrals (similar to
sedimentation [Guazzelli & Hinch (2011)]).

• Need a regularization mechanism, such as screening.

• Forthcoming numerical simulations should help settle this.
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