Drift due to a viscous vortex ring
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Small vortices generated by jellyfish

Katija & Dabiri (2009)

s

play movie (Palau’s JeInyish Lake.)



http://www.math.wisc.edu/~jeanluc/movies/jellyfish_katija-dabiri.mp4
http://en.wikipedia.org/wiki/Jellyfish_Lake

Probability density of displacements Y

Experiments with microswimmers:

e Measure pdf of displacements
of small particles.

e Non-Gaussian pdf with
‘exponential’ tails.

PDF

e 'Diffusive scaling’
possibly a short time effect
[Thiffeault (2015)].
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[Leptos, K. C., Guasto, J. S., Gollub, J. P., Pesci, A. I., & Goldstein, R. E. (2009).
Phys. Rev. Lett. 103, 198103]

3/27



Strategy for the probability density of displacements

e Find the full finite-path drift function A for a single swimmer.

e The sum of displacements for many swimmers is the convolution of
single-swimmer displacements.

e In Fourier space (characteristic function), the convolution is a simple
product, but then have to take an inverse transform.

e Usually this inverse transform is approximated to give the Central
Limit Theorem, but we evaluate it explicitly when experimental times
are short (as in Leptos et al. (2009) — see Thiffeault (2015)).

e Care must be taken when going to the ‘thermodynamic’ limit.

e We must assume some hydrodynamic model to obtain the
single-swimmer displacements.
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Probability density of displacements for a swimmer Y

Finite-path drift function Ax(n) for a fluid particle, initially at x = n,
affected by a single swimmer moving at velocity U:

AU
Ax(n) = /0 u(x(s) — Us)ds, x=u(x—Ut), x(0)=mn.

Assuming homogeneity and isotropy, we obtain the probability density of
displacements,

1 dv,
— = | s(r=nA /]
pR%\(r) Qrd-1 /\/ (r /\(77)) vV
where Q = Q(d) is the area of the unit sphere in d dimensions.

Here Ri is a random variable that gives the displacement of the particle
from its initial position after being affected by a single swimmer with path
length .

5/ 27



Variance W

The second moment (variance) of R} is
(R = | Pogav= [ a3 2
Let R’AV be the random particle displacement due to NV swimmers;
(RVP) = N(RYP) = n | M3mav

with n = N/V the number density of swimmers.

If the integral above exists then the particle motion is diffusive after we
allow for random re-orientation of the swimmers.
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Probability density for x displacement Y

We integrate over y and z to get the pdf for one coordinate x only:
dV
pa() =3 [ s 1Balm) > )

where [A] is an indicator function: it is 1 if A is satisfied, 0 otherwise.

Now we want pX)’\V(X)' the pdf for N swimmers. The road to this is
through the characteristic function:

(eikXA1> _ /_OO PXi(X) etf dx :/ sinc(kA)\(Tl)) %

v

where sinc x ;= x L sin x.

(In 2D, replace sinc by Bessel function Jy(x).)
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Characteristic function W

To help integrals converge nicely later, it is better to work with
v(x) =1 —sincx.

Then, .
(e*5) = 1= (va/V)TA(K)

where

1

(k)= - /V (kD)) dViy

Here vy is the volume ‘carved out’ by a swimmer moving a distance \:
v\ = Ao

with o the cross-sectional area of the swimmer in the direction of motion.
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Many swimmers Y

The sum of many displacements has distribution given by a convolution of
individual distributions.
ikXQ’) _ <eikX§>N

The characteristic function for N swimmers is thus (e

(PN = (1= (k) V)"
~exp(—nvyaTr(k)), V — .

where we used N = nV.

Define the number of head-on collisions for path length A:
Uy = nvy,

We take the inverse Fourier transform of (¢*X)N to finally obtain

P (x) = — / " exp (—up Ty (K)) e dk

2 J_ s

9/ 27



A model swimmer W

This is as far as we can go without introducing a model swimmer.

We take a squirmer, with axisymmetric streamfunction:

03 8027 2
_ 1.2 3
\Usf(p’ Z) =35p U {—1 + (p2 n 22)3/2 + 5(,02 n 22)3/2 (,02 T2 - 1>}

[See for example Lighthill (1952); Blake (1971); Ishikawa et al. (2006); Ishikawa &
Pedley (2007b); Drescher et al. (2009)]

We use the stresslet strength 5 = 0.5, which is close to a treadmiller:
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Comparing to Leptos et al. Y

0
 [pm]

Fit the stresslet strength 5 = 0.5 to one curve. The only fitted parameter
is the stresslet strength 5 = 0.5. [Thiffeault2015] »7




Comparing to Eckhardt & Zammert \/

Eckhardt & Zammert (2012) have a beautiful fit to the data based on a
phenomenological continuous-time random walk model (dashed):

10°[ o ¢ = 04%
s ¢ =08%
* 0=22%
102
= A N
Q 10 47 - R
10°,
-10 -5 0 5 10

Our models disagree in the tails, but there is no data there.
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Time-dependent swimmer Y
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Sphere-flagellum time-dependent swimmer [Peter Mueller] [piay movie
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http://www.math.wisc.edu/~jeanluc/movies/Darwindriftmovie_movingpFaxen2regMaul.mp4

Time-dependent swimmer: pdfs

The no-slip sphere in the time-dependent model leads to an increased
probability of large displacements and ‘lifts’ the tails of the distribution:

R px,(z)

¢ =0.4% N
/

¢ =08%

25 -2 -15 -1 05 0 05 1 15 2 25

z/R

25 -2 -15 -1 05 0 05 1 15 2 25

R px,(z)

z/R

This gives even better agreement with the experiments.

[Mueller & Thiffeault, preprint]
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Transport by vortices Y

e For the jellyfish, vortex rings are a convenient building block.

e Inviscid vortex filament: trapped region (atmosphere) leads to infinite
transport.

e Unlike 2D, velocity depends logarithmically on core size.

e We must add some viscosity to regularize:

e How far does a vortex go?
¢ How does the trapped region change in time?

e Use a model vortex rather than numerical solution, since we need to
go to large distances to evaluate fA2 dv.

e Some references: [Phillips (1956); Tung (1967); Maxworthy (1972); Stanaway
et al. (1988); Saffman (1992); Shariff & Leonard (1992); Dabiri & Gharib (2004);
Dabiri (2006); Shadden et al. (2006); Fukumoto & Kaplanski (2008); Fukumoto
(2010)]
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Viscous model W

Equation for azimuthal component of the vorticity ((p, z, t):

¢ | 9(up) | 9(uzC) ¢ 1a¢ ¢ 9%
at o, T o < pp AT )

9> pop P 02

The velocity components are given in terms of the
streamfunction W(p, z, t),

10V 10V
wSTpa T
The boundary conditions are
V(0,z,t) =¢(0,z,t) =0
¢,V —0, as r — oo

[Fukumoto & Kaplanski (2008); Fukumoto (2010)]
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Viscous model: vortex filament

We follow Fukumoto & Kaplanski (2008) and neglect the inertial terms.
Initial condition corresponding to a vortex filament of radius pg at z = 0:

Co(p,z) =Tod(p — po) 6(2)

Solution:

[0 po P> +p5+ 2 PPo
2t) = o ep <O ) (00
Wz t) = eXp< vt ot

Notice that ( is even in z, so the vorticity centroid

Z(t):/_Z/Ooogp2zdpdz//_2/ooogp2dpdz

is zero for all times.
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Viscous model: vortex motion

However, the time derivative U(t) = Z evaluated directly using the full
equations of motion is nonzero.

Fukumoto & Kaplanski (2008) use this to estimate U(t):

0Py 3 3.5 %
)=— 20 ) F (3,353 -0
U() 96\/%(1/1{')3/2{2 2(27212’ ' 2ut>

2 3547 P2 T2vt o 1%
— 52k (5,5.2, 2 —2701&) TR Xp( 4VO'-‘) Il(rl?f>

0

This is a bit messy, but has the advantage that it's valid for small and
large times.
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Viscous model: vortex motion (cont'd)

7Ty pg
240v/2(ut)3/2

102 10°

vt

10°

A crucial fact is that U(t) decays as t~3/2, so the total vortex
displacement is finite (unlike in 2D): ‘ZOO ~ 5I’0pg/247w‘
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Particle drift

The Fukumoto & Kaplanski (2008) solution is (nearly) analytic, so it
allows us to

e Easily do particle advection;

e Derive far-field asymptotics (cruciall).

=0.55 (Re=300)

Re =100 play movie Re =200 play movie Re =500 play movie
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http://www.math.wisc.edu/~jeanluc/movies/vortex_drift_Re100.mp4
http://www.math.wisc.edu/~jeanluc/movies/vortex_drift_Re200.mp4
http://www.math.wisc.edu/~jeanluc/movies/vortex_drift_Re500.mp4

e drift function A(p, z)

A at Re=300

125

e A(p,z) is the net
particle displacement

B as a function of

initial position.

e |argest displacements
come from particles
initially in the vortex.

e Broadens as particle
are entrained.

e Eventually peters out.
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Integrated squared displacement Y

The far-field (large r) total displacement asymptotes to

| 54 3cos26

| = 7lp2
47y r ’ 0P

A(r,0) ~

With respect to our drift-based diffusion model, this is bad news, since the
integrated squared displacement diverges with R:

24 2R
/ / A%(r,0) 27r? smc9drd0—5——

T V2

At large distances the displacements are very small, but not small enough
for a ‘thermodynamic limit' to make sense.

How do we choose the regularization radius R?
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Regularization of the divergence Y

How do we pick the regularization radius R? Two ideas:

e R is the domain size. Similar thing can happen in sedimendation
problems. Clearly nonsense in large systems.

e R = +/4vt, where t is the age of the vortex. This is the largest radius
where particles have reached their full displacement.

e Ris n'/3, the mean distance between vortices in our ‘gas’ of vortices
with low number density n. The presence of other vortices
‘decorrelates’ (screens) the far-field displacements.

The latter sounds more sensible. It gives a prediction for the scaling of the
effective diffusivity:

Dwn/ A2dV ~ n?/3
Vv

Ongoing work: numerical simulations to confirm or rule out this scaling.
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Conclusions W

e We have a theory that works very well in explaining mixing by
microorganisms.

o Predicts effective diffusivity as well as detailed pdf of particle
displacements.

e Based on Lagrangian drift due to single ‘swimmer.’
e This should have broader applicability: try vortex rings.

e Unlike the microswimmer case, leads to divergent integrals (similar to
sedimentation [Guazzelli & Hinch (2011)]).

e Need a regularization mechanism, such as screening.

e Forthcoming numerical simulations should help settle this.
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