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The Mixing Enhancement Factor

• The steady advection-diffusion equation

u(x) · ∇θ − κ∆θ = s(x), ∇ · u = 0,

describes how a spatial source of passive scalar s(x) is stirred
by a velocity field u(x).

• How well is the source spread out by the stirring? One
traditional measure is the variance ‖θ‖2

2 of the concentration
(assuming a zero mean concentration).

• A related measure is the enhancement factor

E := ‖θ̃‖2/‖θ‖2 ≥ 1 , (hopefully!)

which compares the variance to that in the absence of
stirring, ‖θ̃‖2. Larger E implies more effective stirring.
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Two Optimization Problems

• A natural question is then:

For a fixed source distribution, which velocity field maximizes
the enhancement factor?

• This is a hard question. Let’s instead ask an easier, but still
relevant one:

For a fixed velocity field, which source distribution maximizes
the enhancement factor?

• The attractive aspect of the source optimization problem is
that it has a simple mathematical answer, and the structure of
the solution sheds light on the velocity optimization problem.
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Source Optimization
Define the linear operators

L := u(x) · ∇ − κ∆ and L̃ := −κ∆,

from which we can write the solution to advection-diffusion and
diffusion equation

θ = L−1s and θ̃ = L̃−1s .

The enhancement factor is then

E2 =
〈
s Ã−1s

〉
/
〈
s A−1s

〉
,

where the self-adjoint operators A and Ã are

A := LL∗ , Ã := L̃L̃∗ = κ2(−∆)2

and we have used the notation 〈·〉 to denote spatial integration.
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The Variational Problem
Maximizing E is now a simple problem in variational calculus,

δE2 =
2〈

s A−1s
〉 〈(Ã−1s − E2 A−1s

)
δs
〉

= 0,

with solution
AÃ−1s = E2 s.

This is an eigenvalue problem for the operator AÃ−1. The optimal
enhancement factor is given by its largest eigenvalue, and the
corresponding optimal source by the eigenfunction.

It is simple to show that this solution is a global maximum.

For numerical implementation, it is preferable to solve the
equivalent self-adjoint eigenvalue problem

(Ã−1/2AÃ−1/2) r = E2 r , s = Ã1/2 r .
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A Uniform Flow

As a simple example, consider a spatially-uniform flow u(x) = U êx

along the x direction, in a periodic domain of size L.

The optimal enhancement factor is then

E =

√
1 +

U2L2

4π2κ2
=:
√

1 + Pe2

with optimal source

s(x) = A cos(2πx/L) + B sin(2πx/L)

where we have defined the Péclet number Pe := UL/2πκ.

The mechanism is simple: the optimal source is such that ‘hot’ is
swept onto ‘cold’ and vice versa. We will see that this is a general
feature of optimal sources.
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A Perturbed Flow

Consider now a two-dimensional uniform flow along the x–axis
perturbed by a weak flow,

u(x , y) = U êx + εu1(x , y)

where
u1(x , y) = u1x(y) êx + u1y (x) êy ,

Because the base flow is in the êx direction, the u1x(y)êx term is a
shear flow perturbation, and the u1y (x)êy term is a wavy flow
perturbation.

The modification to the enhancement factor can be computed
easily using perturbation theory.
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Shear vs Wavy Flow

Red = ’hot’, Blue = ’cold’, (L = 2π, κ = 0.01)
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Shear: the optimal source is
localized in regions of faster
flow.
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Wavy: no change to the
optimal source.
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Cellular Flow
Consider now a cellular flow with streamfunction (L = 2π, κ = 0.01)

ψ(x , y) = sin x sin y + δ1 sin 2x + δ2 sin 2x sin 2y

For δ1 = δ2 = 0, we find numerically the doubly-degenerate
optimal sources:
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The optimal source avoids stagnation points. We still see the
tendency of hot to be swept onto cold.
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Perturbed Cellular Flow
Adding perturbations to the cellular flow breaks the symmetry and
thus the degeneracy of the optimal solution.
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Yet again the optimal source avoids stagnation points, hot is swept
onto cold, and faster regions are favored.
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Large Perturbations
Things can get a bit strange. . .
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Again the optimal source avoids stagnation points, and hot is
swept onto cold.
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Dependence on Diffusivity
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The optimal source converges to an invariant pattern. For large κ
case there are sources and sinks over some hyperbolic points.
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Dependence on Diffusivity (cont’d)
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Optimal source (solid line), and sin x and cos x reference sources
(dashed lines). For small κ, the enhancement factor scales like κ−1.
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Conclusions (part 1)

• In both the perturbation problem and the numerical examples,
the optimal source distributions tend to exhibit the following
features:

1. Avoidance of stagnation points of the flow, especially elliptic;
2. Localization over regions of rapid flow;
3. Alignment of the source contours perpendicular to the local

velocity, so that hot is swept onto cold and vice versa.

• The optimization procedure is numerically straightforward.

• Also used a more general measure that weighs scalar gradients
differently, similar to the mix-norm [Mathew et al., 2005].

• We are also working on optimizing boundary sources (more
relevant in industrial problems) with Jai Sukhatme.

• Three-dimensionality (easy) and time-depence (tedious)
should be included.

• Velocity optimization is the next stage (hard but fun).
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Mathew, G., Mezić, I. & Petzold, L. 2005 A multiscale measure for
mixing. Physica D 211, 23–46.

Plasting, S. & Young, W. R. 2006 A bound on scalar variance for
the advection–diffusion equation. J. Fluid Mech. 552, 289–298.

Shaw, T. A., Thiffeault, J.-L. & Doering, C. R. 2007 Stirring up
Trouble: Multi-scale Mixing Measures for Steady Scalar Sources.
Physica D 231, 143–164. arXiv:physics/0607270.

Thiffeault, J.-L., Doering, C. R. & Gibbon, J. D. 2004 A Bound on
Mixing Efficiency for the Advection–Diffusion Equation. J. Fluid
Mech. 521, 105–114.

Thiffeault, J.-L. & Pavliotis, G. A. 2008 Optimizing the Source
Distribution in Fluid Mixing. Physica D 237, 918–929.
arXiv:physics/0703135.

15 / 15

arXiv:physics/0607270
arXiv:physics/0703135

	Optimization
	

	Examples of Optimal Sources
	

	Dependence on Diffusivity
	

	Conclusions
	References

