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The Mixing Enhancement Factor
The steady advection-diffusion equation
u(x) - VO — kA0 = s(x), V-u=0,
describes how a spatial source of passive scalar s(x) is stirred
by a velocity field u(x).
How well is the source spread out by the stirring? One

. . . 2 .
traditional measure is the variance ||6||5 of the concentration
(assuming a zero mean concentration).

A related measure is the enhancement factor
€ :=0]l,//16ll, > 1, (hopefully!)

which compares the variance to that in the absence of
stirring, [|0||,. Larger € implies more effective stirring.
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Two Optimization Problems

A natural question is then:

For a fixed source distribution, which velocity field maximizes
the enhancement factor?

This is a hard question. Let’s instead ask an easier, but still
relevant one:

For a fixed velocity field, which source distribution maximizes
the enhancement factor?

The attractive aspect of the source optimization problem is
that it has a simple mathematical answer, and the structure of
the solution sheds light on the velocity optimization problem.
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Source Optimization
Define the linear operators

L:=u(x) - V—-krA and L= —kA,

from which we can write the solution to advection-diffusion and
diffusion equation

0=~L"1s and 6=1L"1s.
The enhancement factor is then
&2 = <sﬁfls>/<sﬂfls>,
where the self-adjoint operators A and A are
A=LL%, A=LL =K3(=A)?

and we have used the notation (-) to denote spatial integration.
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The Variational Problem
Maximizing € is now a simple problem in variational calculus,

2

5€2 = GATS <(ﬁfls - c‘:%crls) 5s> —0,

with solution B
AA s = €25,

This is an eigenvalue problem for the operator AA-L The optimal
enhancement factor is given by its largest eigenvalue, and the
corresponding optimal source by the eigenfunction.

It is simple to show that this solution is a global maximum.

For numerical implementation, it is preferable to solve the
equivalent self-adjoint eigenvalue problem

(ﬁ_l/zﬂfl_lp)r = &%r, s=AY2r.
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A Uniform Flow

As a simple example, consider a spatially-uniform flow u(x) = U &,
along the x direction, in a periodic domain of size L.

The optimal enhancement factor is then

/ 2]2
&= l—i—Ui::\/l—&—Pe2
4722

with optimal source
s(x) = Acos(2wx/L) + Bsin(2mx/L)

where we have defined the Péclet number Pe := UL/27k.

The mechanism is simple: the optimal source is such that ‘hot’ is
swept onto ‘cold’ and vice versa. We will see that this is a general
feature of optimal sources.

6

15



Examples of Optimal Sources
0e0000

A Perturbed Flow

Consider now a two-dimensional uniform flow along the x—axis
perturbed by a weak flow,

U(X,y) = Uéx +5U1(Xay)
where

ur(x,y) = uix(y) éx + ury(x) &y,

Because the base flow is in the &, direction, the u1,(y)éx term is a
shear flow perturbation, and the uy,(x)é, term is a wavy flow
perturbation.

The modification to the enhancement factor can be computed
easily using perturbation theory.
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Dependence on Diffusivity

Conclusions

Shear vs Wavy Flow

Red = 'hot’,

q) 2 4 6

X
Shear: the optimal source is

localized in regions of faster
flow.

Blue = 'cold’,

(L=2r r=0.01)

QD 2 4 6
T
Wavy:  no change to the

optimal source.
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Cellular Flow
Consider now a cellular flow with streamfunction (L = 27, x = 0.01)
¥(x,y) =sinx siny + d1 sin2x + J, sin 2x sin 2y

For 1 = 2 = 0, we find numerically the doubly-degenerate
optimal sources:

6
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The optimal source avoids stagnation points. We still see the

tendency of hot to be swept onto cold.
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Perturbed Cellular Flow

Adding perturbations to the cellular flow breaks the symmetry and
thus the degeneracy of the optimal solution.

01 =0.05

0 2 4 6

Yet again the optimal source avoids stagnation points, hot is swept

onto cold, and faster regions are favored.
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Large Perturbations
Things can get a bit strange. ..

01 =0,=02
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Again the optimal source avoids stagnation points, and hot is
swept onto cold.
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Dependence on Diffusivity
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to an invariant pattern. For large k
ces and sinks over some hyperbolic points.



Optimization Examples of Optimal Sources Dependence on Diffusivity Conclusions References
0000 000000 oe

Dependence on Diffusivity (cont'd)

Optimal source (solid line), and sin x and cos x reference sources
(dashed lines). For small k, the enhancement factor scales like x71.
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Conclusions

Conclusions (part 1)

In both the perturbation problem and the numerical examples,
the optimal source distributions tend to exhibit the following
features:

1. Avoidance of stagnation points of the flow, especially elliptic;

2. Localization over regions of rapid flow;

3. Alignment of the source contours perpendicular to the local
velocity, so that hot is swept onto cold and vice versa.

The optimization procedure is numerically straightforward.

Also used a more general measure that weighs scalar gradients
differently, similar to the mix-norm [Mathew et al., 2005].

We are also working on optimizing boundary sources (more
relevant in industrial problems) with Jai Sukhatme.

Three-dimensionality (easy) and time-depence (tedious)
should be included.

Velocity optimization is the next stage (hard but fun).
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