Braids 00000 Silver mixers

Minimizers 000000 Conclusion

References

Topological optimization

Jean-Luc Thiffeault

Department of Mathematics University of Wisconsin – Madison

Indiana University, 14 January 2011

Collaborators:

Matthew Finn Erwan Lanneau Phil Boyland University of Adelaide CPT Marseille University of Florida

Braids 00000 ilver mixers

Minimizers 000000 Conclusion

References

The taffy puller

[Photo and movie by M. D. Finn.]

[movie 1]

Braids 00000 Silver mixers

Minimizers 000000 Conclusion

References

The mixograph

Model experiment for kneading bread dough:

[Department of Food Science, University of Wisconsin. Photos by J-LT.]

Braids 00000 Silver mixers 00000 Minimizers 000000 Conclusion

References

Planetary mixers

In food processing, rods are often used for stirring.

[movie 2] ⓒBLT Inc.

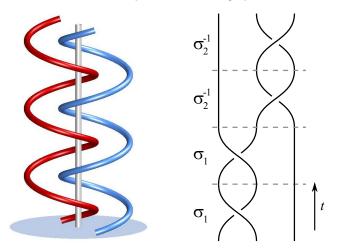
Braids 00000 ilver mixers

Minimizers 000000 Conclusion

References

Experiment of Boyland, Aref & Stremler

[movie 3] [movie 4]

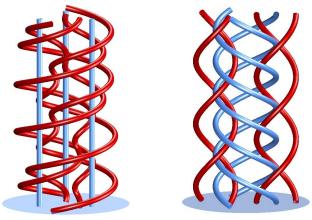

[P. L. Boyland, H. Aref, and M. A. Stremler, J. Fluid Mech. 403, 277 (2000)]

Braids ●0000 Silver mixers

Minimizers 000000 Conclusions

References

Braid description of taffy puller



The three rods of the taffy puller in a space-time diagram. Defines a braid on n = 3 strands, $\sigma_1^2 \sigma_2^{-2}$ (three periods shown).

Braids ○●○○○ Silver mixers 00000 Minimizers 000000 Conclusion

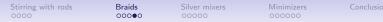
References

Braid description of mixograph

$\sigma_3\sigma_2\sigma_3\sigma_5\sigma_6^{-1}\sigma_2\sigma_3\sigma_4\sigma_3\sigma_1^{-1}\sigma_2^{-1}\sigma_5$ braid on B_7 , the braid group on 7 strands.

Stirring with rods	Braids	Silver mixers	Minimizers	Conclusions	Refe
0000	00000	00000	000000		

Topological entropy of a braid


Burau representation for 3-braids:

$$[\sigma_1] = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}, \qquad [\sigma_2] = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},$$
$$\sigma_1^{-1} \sigma_2] = [\sigma_1^{-1}] \cdot [\sigma_2] = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}.$$

This matrix has spectral radius $(3 + \sqrt{5})/2$ (Golden Ratio²), and hence the topological entropy is log[$(3 + \sqrt{5})/2$].

This is the growth rate of a 'rubber band' caught on the rods.

This matrix trick only works for 3-braids, unfortunately.

usions

References

Optimizing over generators

- Entropy can grow without bound as the length of a braid increases;
- A proper definition of optimal entropy requires a cost associated with the braid.
- Divide the entropy by the smallest number of generators required to write the braid word.
- For example, the braid $\sigma_1^{-1} \sigma_2$ has entropy $\log[(3 + \sqrt{5})/2]$ and consists of two generators.
- Its Topological Entropy Per Generator (TEPG) is thus $\frac{1}{2} \log[(3 + \sqrt{5})/2] = \log[\text{Golden Ratio}].$
- Assume all the generators are used (stronger: irreducible).

Stirring	with	rods
0000		

Braids 00000 Silver mixers

Minimizers 000000 Conclusions

References

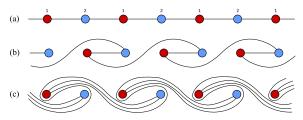
Optimal braid

- In B_3 and B_4 , the optimal TEPG is log[Golden Ratio].
- Realized by $\sigma_1^{-1}\sigma_2$ and $\sigma_1^{-1}\sigma_2\sigma_3^{-1}\sigma_2$, respectively.
- In B_n , n > 4, the optimal TEPG is $< \log[Golden Ratio]$.

Why? Recall Burau representation:

$$[\sigma_1] = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}, \qquad [\sigma_2] = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},$$

Its spectral radius provides a lower bound on entropy. However,

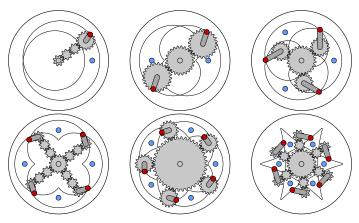

$$|[\sigma_1]| = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \qquad |[\sigma_2]| = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix},$$

provides an upper bound! Need to find Joint Spectral Radius.

Periodic array of rods

- Consider periodic lattice of rods.
- Move all the rods such that they execute $\sigma_1 \sigma_2^{-1}$ with their neighbor (Boyland et al., 2000).

- The entropy per 'switch' is $log(1 + \sqrt{2})$, the Silver Ratio!
- This is optimal for a periodic lattice of two rods (follows from D'Alessandro et al. (1999)).
- Also optimal if we assign cost by simultaneous operation.


Braids 00000 Silver mixers

Minimizers 000000 Conclusions

References

Silver mixers

- The designs with entropy given by the Silver Ratio can be realized with simple gears.
- All the rods move at once: very efficient.

Braids 00000 Silver mixers

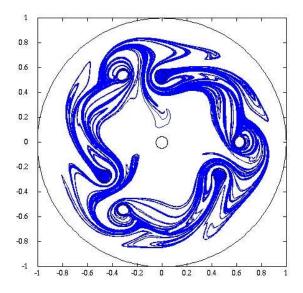
Minimizers 000000 Conclusion

References

Build it!

[movie 6] [movie 7]

Experiment: Silver mixer with four rods


Braids

Silver mixers

Minimizers 000000 Conclusion

References

Silver mixer with six rods

[movie 8]

The Minimizer problem

- On a given surface of genus g, which pA has the least λ ?
- If the foliation is orientable (vector field), then things are much simpler;
- Action of the pA on first homology captures dilatation λ;
- Polynomials of degree 2g;
- Procedure:
 - We have a guess for the minimizer;
 - Find all integer-coefficient, reciprocal polynomials that could have smaller largest root;
 - Show that they can't correspond to pAs;
 - For the smallest one that can, construct pA.

Braids 00000 Silver mixers

Minimizers 000000 Conclusions

References

Newton's formulas

We need an efficient way to bound the number of polynomials with largest root smaller than $\lambda.$ Given a reciprocal polynomial

$$P(x) = x^{2g} + a_1 x^{2g-1} + \dots + a_2 x^2 + a_1 x + 1$$

we have Newton's formulas for the traces,

$$\operatorname{Tr}(\phi_*^k) = -\sum_{m=1}^{k-1} a_m \operatorname{Tr}(\phi_*^{k-m}) - ka_k,$$

where

- ϕ is a (hypothetical) pA associated with P(x);
- ϕ_* is the matrix giving the action of the pA ϕ on first homology;
- $Tr(\phi_*)$ is its trace.

Braids 00000 Silver mixers

Minimizers

Conclusions

References

Bounding the traces

The trace satisfies

$$|\operatorname{Tr}(\phi_*^k)| = \left|\sum_{m=1}^g (\lambda_m^k + \lambda_m^{-k})\right| \le g(r^k + r^{-k})$$

where λ_m are the roots of ϕ_* , and $r = \max_m(|\lambda_m|)$.

- Bound $\operatorname{Tr}(\phi_*^k)$ with $r < \lambda$, $k = 1, \dots, g$;
- Use these g traces and Newton's formulas to construct candidate P(x);
- Overwhelming majority have fractional coeffs \rightarrow discard!
- Carefully check the remaining polynomials:
 - Is their largest root real?
 - Is it strictly greater than all the other roots?
 - Is it really less than λ ?
- Largest tractable case: $g = 8 (10^{12} \text{ polynomials})$.

Braids 00000 Silver mixers

Minimizers

Conclusions

References

Lefschetz's fixed point theorem

This procedure still leaves a fair number of polynomials — though not enormous (10's to 100's, even for g = 8.) The next step involves using Lefschetz's fixed point theorem to eliminate more polynomials:

$$L(\phi) = 2 - \operatorname{Tr}(\phi_*) = \sum_{\boldsymbol{p} \in \operatorname{Fix}(\phi)} \operatorname{Ind}(\phi, \boldsymbol{p})$$

where

- $L(\phi)$ is the Lefschetz number;
- Fix(φ) is set of fixed points of φ;
- $\operatorname{Ind}(\phi, p)$ is index of ϕ at p.

We can easily compute $L(\phi^k)$ for every iterate using Newton's formula.

Eliminating polynomials

Outline of procedure: for a surface of genus g,

- Use the Euler–Poincaré formula to list possible singularity data for the foliations;
- For each singularity data, compute possible contributions to the index (depending on how the singularities and their separatrices are permuted);
- Check if index is consistent with Lefschetz's theorem.

With this, we can reduce the number of polynomials to one or two!

Stirring	with	rods	
0000			

Braids 00000 Silver mixers

Minimizers 00000 Conclusions

References

Minimizers for orientable foliations

g	polynomial	minimizer
2	$X^4 - X^3 - X^2 - X + 1$	$\simeq 1.72208$ †
3	$X^6 - X^4 - X^3 - X^2 + 1$	$\simeq 1.40127$
4	$X^8 - X^5 - X^4 - X^3 + 1$	$\simeq 1.28064$
5	$X^{10} + X^9 - X^7 - X^6 - X^5 - X^4 - X^3 + X + 1$	$\simeq 1.17628$ *
6	$X^{12} - X^7 - X^6 - X^5 + 1$	$\gtrsim 1.17628$
7	$X^{14} + X^{13} - X^9 - X^8 - X^7 - X^6 - X^5 + X + 1$	$\simeq 1.11548$
8	$X^{16} - X^9 - X^8 - X^7 + 1$	$\simeq 1.12876$

- † Zhirov (1995)'s result; also for nonorientable [Lanneau-T];
- * Lehmer's number; realized by Leininger (2004)'s pA;
- For genus 6 we have not explicitly constructed the pA;
- Genus 6 is the first nondecreasing case.
- Genus 7 and 8: pA's found by Aaber & Dunfield (2010) and Kin & Takasawa (2010b) [g = 7]; Hironaka (2009) [g = 8].

- Having rods undergo 'braiding' motion guarantees a minimal amound of entropy (stretching of material lines).
- Can optimize to find the best rod motions, but depends on choice of 'cost function.'
- For two natural cost functions, the Golden Ratio and Silver Ratio pop up!
- Found orientable minimizer on surfaces of genus g ≤ 8; only known nonorientable case is for genus 2.

Braids 00000 Silver mixers

Minimizers 000000 Conclusion

References

References

- Aaber, J. & Dunfield, N.. 2010 Closed surface bundles of least volume. Preprint.
- Boyland, P. L., Aref, H. & Stremler, M. A. 2000 Topological fluid mechanics of stirring. J. Fluid Mech. 403, 277–304.
- D'Alessandro, D., Dahleh, M. & Mezić, I. 1999 Control of mixing in fluid flow: A maximum entropy approach. IEEE Transactions on Automatic Control 44, 1852–1863.
- Finn, M. D., & Thiffeault, J.-L. 2010 Topological optimisation of rod-stirring devices. SIAM Review, in press.

Gouillart, E., Finn, M. D. & Thiffeault, J.-L. 2006 Topological Mixing with Ghost Rods. Phys. Rev. E 73, 036311.

- Ham, J.-Y. & Song, W. T. 2007 The minimum dilatation of pseudo-Anosov 5-braids. Experiment. Math. 16, 167–179.
- Hironaka, E. 2009 Small dilatation pseudo-Anosov mapping classes coming from the simplest hyperbolic braid. Preprint.
- Kin, E. & Takasawa, M. 2010a Pseudo-Anosovs on closed surfaces having small entropy and the Whitehead sister link exterior. Preprint.
- Kin, E. & Takasawa, M. 2010b Pseudo-Anosov braids with small entropy and the magic 3-manifold. Preprint.
- Lanneau, E. & Thiffeault, J.-L. 2010a On the minimum dilatation of pseudo-Anosov diffeomorphisms on surfaces of small genus. Annales de l'Institut Fourier, in press.
- Lanneau, E. & Thiffeault, J.-L. 2010b On the minimum dilatation of braids on the punctured disc. Geometriae Dedicata, in press.
- Leininger, C. J. 2004 On groups generated by two positive multi-twists: Teichmüller curves and Lehmer's number. Geom. Topol. 8, 1301–1359.
- Moussafir, J.-O. 2006 On the Entropy of Braids. Func. Anal. and Other Math. 1, 43-54.
- Song, W. T., Ko, K. H. & Los, J. E. 2002 Entropies of braids. J. Knot Th. Ramifications 11, 647-666.
- Thiffeault, J.-L. & Finn, M. D. 2006 Topology, Braids, and Mixing in Fluids. Phil. Trans. R. Soc. Lond. A 364, 3251–3266.
- Thiffeault, J.-L., Finn, M. D., Gouillart, E. & Hall, T. 2008 Topology of Chaotic Mixing Patterns. Chaos 18, 033123.
- Thurston, W. P. 1988 On the geometry and dynamics of diffeomorphisms of surfaces. Bull. Am. Math. Soc. 19, 417–431.
- Zhirov, A. Y. 1995 On the minimum dilation of pseudo-Anosov diffeomorphisms of a double torus. *Russ. Math.* Surv. 50, 223–224.