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Three personal examples

To be able to prepare in time, I decided to narrow the focus to a few
papers written at the IMA, with several participants:

Lin, Z., Doering, C. R., & Thiffeault, J.-L. (2011a). J. Fluid Mech. 675, 465–476

Thomases, B., Shelley, M., & Thiffeault, J.-L. (2011). Physica D, 240,
1602–1614

Lin, Z., Thiffeault, J.-L., & Childress, S. (2011b). J. Fluid Mech. 669, 167–177

Zhi George Lin was a postdoc here and is now at Zhejiang University.

I’ll discuss the papers and some of their impact.

I apologize for the shameless focus on my papers. . .
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Optimization of mixing

Inspired by ‘mix-norm’ of Mathew et al. (2005): H−1/2 → H−1.

J. Fluid Mech. (2011), vol. 675, pp. 465–476. c© Cambridge University Press 2011

doi:10.1017/S0022112011000292

465

Optimal stirring strategies for passive
scalar mixing

ZHI LIN1, JEAN-LUC THIFFEAULT2

AND CHARLES R. DOERING3†
1Institute for Mathematics and its Applications, University of Minnesota, Minneapolis, MN 55455, USA

2Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA
3Department of Mathematics, Department of Physics and Center for the Study of Complex Systems,

University of Michigan, Ann Arbor, MI 48109, USA

(Received 4 September 2010; revised 30 October 2010; accepted 12 January 2011;

first published online 10 March 2011)

We address the challenge of optimal incompressible stirring to mix an initially
inhomogeneous distribution of passive tracers. As a quantitative measure of mixing
we adopt the H −1 norm of the scalar fluctuation field, equivalent to the (square root
of the) variance of a low-pass filtered image of the tracer concentration field. First
we establish that this is a useful gauge even in the absence of molecular diffusion:
its vanishing as t → ∞ is evidence of the stirring flow’s mixing properties in the sense
of ergodic theory. Then we derive absolute limits on the total amount of mixing,
as a function of time, on a periodic spatial domain with a prescribed instantaneous
stirring energy or stirring power budget. We subsequently determine the flow field
that instantaneously maximizes the decay of this mixing measure – when such a
flow exists. When no such ‘steepest descent’ flow exists (a possible but non-generic
situation), we determine the flow that maximizes the growth rate of the H −1 norm’s
decay rate. This local-in-time optimal stirring strategy is implemented numerically
on a benchmark problem and compared to an optimal control approach using a
restricted set of flows. Some significant challenges for analysis are outlined.

Key words: mathematical foundations, mixing, nonlinear dynamical systems

1. Introduction
The enhancement of mixing by stirring in incompressible flows is an important

phenomenon in a wide variety of applications in sciences and engineering. A natural
question is: how efficient a mixer can an incompressible flow be? This fundamental
question, more precisely posed, is the subject of this paper.

In principle, given an appropriate quantitative measure of mixing along with suitable
constraints on the accessible class of flow fields, the most efficient mixing strategy may
be determined by solving an optimal control problem. In practice this may be difficult,
so it is useful to consider other approaches that might more easily be implemented, at
least theoretically or computationally. Moreover, it is always useful to know absolute
limits on how fast mixing could ever be achieved subject to the relevant constraints.
Such bounds provide a scale upon which particular strategies may be evaluated to
gauge their effectiveness. Here we propose and analyse a theoretical scenario with a

† Email address for correspondence: doering@umich.edu
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Direct descendant of IMA

JOURNAL OF MATHEMATICAL PHYSICS 53, 115611 (2012)

Optimal mixing and optimal stirring for fixed energy,
fixed power, or fixed palenstrophy flows
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and Charles R. Doering4

1Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109, USA
2Department of Mathematics, Zhejiang University, Hangzhou, Zhejiang 310013,
People’s Republic of China
3Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania
16802, USA
4Department of Mathematics, Department of Physics, and Center for the Study of Complex
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(Received 31 March 2012; accepted 19 July 2012; published online 5 October 2012)

We consider passive scalar mixing by a prescribed divergence-free velocity vector
field in a periodic box and address the following question: Starting from a given
initial inhomogeneous distribution of passive tracers, and given a certain energy
budget, power budget, or finite palenstrophy budget, what incompressible flow field
best mixes the scalar quantity? We focus on the optimal stirring strategy recently
proposed by Lin et al. [“Optimal stirring strategies for passive scalar mixing,” J.
Fluid Mech. 675, 465 (2011)] that determines the flow field that instantaneously
maximizes the depletion of the H− 1 mix-norm. In this work, we bridge some of the
gap between the best available a priori analysis and simulation results. After recalling
some previous analysis, we present an explicit example demonstrating finite-time
perfect mixing with a finite energy constraint on the stirring flow. On the other hand,
using a recent result by Wirosoetisno et al. [“Long time stability of a classical efficient
scheme for two dimensional Navier-Stokes equations,” SIAM J. Numer. Anal. 50(1),
126–150 (2012)] we establish that the H− 1 mix-norm decays at most exponentially
in time if the two-dimensional incompressible flow is constrained to have constant
palenstrophy. Finite-time perfect mixing is thus ruled out when too much cost is
incurred by small scale structures in the stirring. Direct numerical simulations in two
dimensions suggest the impossibility of finite-time perfect mixing for flows with fixed
power constraint and we conjecture an exponential lower bound on the H− 1 mix-
norm in this case. We also discuss some related problems from other areas of analysis
that are similarly suggestive of an exponential lower bound for the H− 1 mix-norm.
C© 2012 American Institute of Physics. [http://dx.doi.org/10.1137/110834901]

Dedicated to Peter Constantin on the occasion of his 60th birthday.

I. INTRODUCTION

The advection of a substance by an incompressible flow is important in many physical settings.
This process often involves complex evolving structures of wide range of space and time scales.
Here, we concentrate on the case of scalar advection where the transported quantity is passive, so
has negligible feedback on the flow. Given a stirring velocity flow field u(x, t) with ∇ · u = 0, we
consider the advection of a passive scalar field ρ(x, t) by a smooth incompressible flow field u(x, t)

a)linzhi80@zju.edu.cn.

0022-2488/2012/53(11)/115611/15/$30.00 C©2012 American Institute of Physics53, 115611-1
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Checkerboard maps provide nice bounds

Lunasin et al. (2012)
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H−1 led to renewed interest in bounds on mixing

(Two workshop participants with a student.)

LOWER BOUNDS ON THE MIX NORM OF PASSIVE SCALARS

ADVECTED BY INCOMPRESSIBLE

ENSTROPHY-CONSTRAINED FLOWS.

GAUTAM IYER, ALEXANDER KISELEV, AND XIAOQIAN XU

Abstract. Consider a diffusion-free passive scalar θ being mixed by an in-
compressible flow u on the torus Td. Our aim is to study how well this scalar

can be mixed under an enstrophy constraint on the advecting velocity field.

Our main result shows that the mix-norm (‖θ(t)‖H−1 ) is bounded below by

an exponential function of time. The exponential decay rate we obtain is not

universal and depends on the size of the support of the initial data. We also

perform numerical simulations and confirm that the numerically observed de-

cay rate scales similarly to the rigorous lower bound, at least for a significant

initial period of time. The main idea behind our proof is to use recent work of

Crippa and DeLellis (’08) making progress towards the resolution of Bressan’s

rearrangement cost conjecture.

1. Introduction

The mixing of tracer particles by fluid flows is ubiquitous in nature, and have
applications ranging from weather forecasting to food processing. An important
question that has attracted attention recently is to study “how well” tracers can be
mixed under a constraint on the advecting velocity field, and what is the optimal
choice of the “best mixing” velocity field (see [24] for a recent review).

Our aim in this paper is to study how well passive tracers can be mixed under
an enstrophy constraint on the advecting fluid. By passive, we mean that the
tracers provide no feedback to the advecting velocity field. Further, we assume
that diffusion of the tracer particles is weak and can be neglected on the relevant
time scales. Mathematically, the density of such tracers (known as passive scalars)
is modeled by the transport equation

(1.1) ∂tθ(x, t) + u · ∇θ = 0, θ(x, 0) = θ0(x).

To model stirring, the advecting velocity field u is assumed to be incompressible.
For simplicity we study (1.1) with periodic boundary conditions (with period 1),
mean zero initial data, and assume that all functions in question are smooth.

The first step is to quantify “how well” a passive scalar is mixed in our context.
For diffusive passive scalars, the decay of the variance is a commonly used measure
of mixing (see for instance [10,14,22,25] and references there in). But for diffusion
free scalars the variance is a conserved and does not change with time. Thus,

This material is based upon work partially supported by the National Science Foundation un-

der grants DMS-1007914, DMS-1104415, DMS-1159133, DMS-1252912. GI acknowledges partial

support from an Alfred P. Sloan research fellowship. AK acknowledges partial support from a

Guggenheim fellowship. The authors also thank the Center for Nonlinear Analysis (NSF Grants

No. DMS-0405343 and DMS-0635983), where part of this research was carried out.
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More H−1. . .

IOP PUBLISHING NONLINEARITY

Nonlinearity 26 (2013) 3279–3289 doi:10.1088/0951-7715/26/12/3279

Maximal mixing by incompressible fluid flows

Christian Seis

Department of Mathematics, University of Toronto, 40 St. George Street, M5S 2E4, Toronto,
Ontario, Canada

Received 4 September 2013, in final form 7 September 2013
Published 21 November 2013
Online at stacks.iop.org/Non/26/3279

Recommended by B Eckhardt

Abstract
We consider a model for mixing binary viscous fluids under an incompressible
flow. We prove the impossibility of perfect mixing in finite time for flows with
finite viscous dissipation. As measures of mixedness we consider a Monge–
Kantorovich–Rubinstein transportation distance and, more classically, the H−1

norm. We derive rigorous a priori lower bounds on these mixing norms which
show that mixing cannot proceed faster than exponentially in time. The rate of
the exponential decay is uniform in the initial data.

Mathematics Subject Classification: 76D55,76F25

1. Introduction

The present manuscript is concerned with optimal stirring strategies for binary mixtures of
incompressible viscous fluids. More precisely, we study decay rates of certain mixing norms
with respect to a constrained velocity field. We focus on passive scalar mixing, which means
that the feedback of the transported quantity on the flow field is negligible. To model the
binary mixture, we consider an indicator function ρ = ρ(t, x) which takes the values +1 and
−1 only, so that the sets {ρ = 1} and {ρ = −1} represent the regions in which the fluid
consists of component ‘A’ and component ‘B’, respectively. As usual, t and x are the time and
space variable, respectively. The stirring velocity field will be denoted by u = u(t, x), and we
assume this vector field to be smooth. The transport of the passive scalar by the incompressible
flow is then described by the system

∂tρ + u · ∇ρ = 0, (1)

∇ · u = 0, (2)

and we impose the initial condition ρ(0, x) = ρ0(x) ∈ {±1}. For mathematical convenience,
we finally assume that all quantities are periodic in the spatial variables with period cell [0, 1)d .
Observe that the total mass of each species is preserved under the flow. In the case of a critical

0951-7715/13/123279+11$33.00 © 2013 IOP Publishing Ltd & London Mathematical Society Printed in the UK & the USA 3279
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Eventually, a review paper

IOP PUBLISHING NONLINEARITY

Nonlinearity 25 (2012) R1–R44 doi:10.1088/0951-7715/25/2/R1

INVITED ARTICLE

Using multiscale norms to quantify mixing and
transport

Jean-Luc Thiffeault

Department of Mathematics, University of Wisconsin–Madison, Madison, WI, USA

E-mail: jeanluc@math.wisc.edu

Received 6 September 2005, in final form 4 October 2011
Published 20 January 2012
Online at stacks.iop.org/Non/25/R1

Recommended by B Eckhardt

Abstract
Mixing is relevant to many areas of science and engineering, including the
pharmaceutical and food industries, oceanography, atmospheric sciences and
civil engineering. In all these situations one goal is to quantify and often then to
improve the degree of homogenization of a substance being stirred, referred to
as a passive scalar or tracer. A classical measure of mixing is the variance of the
concentration of the scalar, which is the L2 norm of a mean-zero concentration
field. Recently, other norms have been used to quantify mixing, in particular the
mix-norm as well as negative Sobolev norms. These norms have the advantage
that unlike variance they decay even in the absence of diffusion, and their decay
corresponds to the flow being mixing in the sense of ergodic theory. General
Sobolev norms weigh scalar gradients differently, and are known as multiscale
norms for mixing. We review the applications of such norms to mixing and
transport, and show how they can be used to optimize the stirring and mixing
of a decaying passive scalar. We then review recent work on the less-studied
case of a continuously replenished scalar field—the source–sink problem. In
that case the flows that optimally reduce the norms are associated with transport
rather than mixing: they push sources onto sinks, and vice versa.

Mathematics Subject Classification: 76R50, 37A25, 46E35, 65K10

1. Introduction

One of the most vexing questions about fluid mixing is how to measure it. People typically
know it when they see it, but specific applications require customized measures. For example, a
measure might be too fine-grained for some applications that do not require thorough mixing.
Some measures, such as residence time distributions, are designed for open-flow situations
where fluid particles are only stirred for a certain amount of time. Others, such as the rigorous

0951-7715/12/020001+44$33.00 © 2012 IOP Publishing Ltd & London Mathematical Society Printed in the UK & the USA R1
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Mixing in viscoelastic flows

Follow-up papers have focused on the flow, not mixing per se.

Author's personal copy

Physica D 240 (2011) 1602–1614

Contents lists available at SciVerse ScienceDirect

Physica D

journal homepage: www.elsevier.com/locate/physd

A Stokesian viscoelastic flow: Transition to oscillations and mixing
Becca Thomases a,∗, Michael Shelley b, Jean-Luc Thiffeault c
a Department of Mathematics, University of California, Davis, CA 95616, United States
b Courant Institute of Mathematical Sciences, New York University, New York City, NY 10012, United States
c Department of Mathematics, University of Wisconsin Madison, WI 53706, United States

a r t i c l e i n f o

Article history:
Available online 25 June 2011

Keywords:
Viscoelasticity
Instability
Mixing
Microfluidics

a b s t r a c t

To understand observations of low Reynolds number mixing and flow transitions in viscoelastic fluids,
we study numerically the dynamics of the Oldroyd-B viscoelastic fluid model. The fluid is driven by a
simple time-independent forcing that, in the absence of viscoelastic stresses, creates a cellular flow with
extensional stagnation points. We find that at O(1) Weissenberg number, these flows lose their slaving
to the forcing geometry of the background force, become oscillatory with multiple frequencies, and show
continual formation and destruction of small-scale vortices. This drives flow mixing, the details of which
we closely examine. These new flow states are dominated by a single-quadrant vortex, which may be
stationary or cycle persistently from cell to cell.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In the past several years, it has come to be appreciated that
in low Reynolds number flow the nonlinearities provided by
non-Newtonian stresses of a complex fluid can provide rich
dynamical behaviors more commonly associated with high
Reynolds number Newtonian flow. For example, experiments
by Steinberg and collaborators have shown that dilute polymer
suspensions being sheared in simple flow geometries can exhibit
highly time-dependent dynamics and efficient mixing [1–3]. The
corresponding experiments using Newtonian fluids do not – and
indeed cannot – show such nontrivial dynamics. One important
constraint on the dynamics of a Stokesian Newtonian fluid is
reversibility [4], which is lost when the fluid is viscoelastic [5,6].

Both mixing and irreversibility are complex phenomena but
even the understanding of elastic instabilities in viscoelastic fluids
is incomplete. Elastic instabilities in low Reynolds number fluids,
where inertia is negligible, have been studied extensively for some
time; see [7–14]. Elastic instabilities are observed at low ormodest
flow rates where inertial forces are negligible but elastic forces are
strong, and have been linked to the creation of secondary vortex
flows [15] and increased flow resistance [16].

Extensional flows, such as the flow in a four-roll mill or flow
in a cross-channel, can be more effective in locally stretching
and aligning polymers than a standard shear flow [17]. As
the macroscopic flow depends on the microscopically generated

∗ Corresponding author. Tel.: +1 5305542988; fax: +1 5307526635.
E-mail address: thomases@math.ucdavis.edu (B. Thomases).

stresses, a flow in an extensional geometry may exhibit an
instability more readily than a flow in a shearing geometry. This
may be due to the fact that a shear flow can be decomposed
into an extensional flow and a rotational flow and the vorticity
in the fluid tends to rotate the fluid microstructure away from
the principal axes of stretching [18,13]. Experiments have shown
that polymer molecules are strongly stretched as they pass near
extensional points in amicro-channel cross flow [19,20]. Schroeder
et al. [19] visualized single-molecule stretching and bistability at
stagnation points. In the work of Arratia et al. [20], molecular
stretching is inferred and two flow instabilities, dependent on
the flow strain rate, are demonstrated. After the onset of the
first instability, the flow becomes deformed and asymmetric but
remains steady; at higher strain rates the velocity field fluctuates
in time and can produce mixing. The first transition appears to be
a forward bifurcation to a bistable steady state; see also [21,22].
In [23], (henceforth TS2009) these instabilities are demonstrated
numerically for a 2D periodic flow, and these results are discussed
in greater detail here. Xi and Graham [24] also found numerically
an oscillatory instability for sufficiently largeWeissenberg number
in an extensional flow geometry, and they suggest a possible
mechanism for the instability due to the concentration of stress
near the extensional point in the flow. In [25], Berti et al. show
numerically that flows with a 2D periodic shearing force can give
rise to non-stationary dynamics.

In this paper, we study computationally a viscoelastic fluid
in an extensional flow. As our flow model, we use the Oldroyd-
B equations with polymer stress diffusion in the zero Reynolds
number (Stokes) limit. The Stokes–Oldroyd-B model is attractive
as it arises from a simple conception of the microscopic origin of
viscoelasticity [26,27]. The bulk fluid is composed of a Newtonian

0167-2789/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2011.06.011
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Biomixing

J. Fluid Mech. (2011), vol. 669, pp. 167–177. c© Cambridge University Press 2011

doi:10.1017/S002211201000563X

167

Stirring by squirmers

ZHI LIN1, JEAN-LUC THIFFEAULT1,2† AND

STEPHEN CHILDRESS3

1Institute for Mathematics and Applications, University of Minnesota – Twin Cities,
207 Church Street SE, Minneapolis, MN 55455, USA

2Department of Mathematics, University of Wisconsin – Madison, 480 Lincoln Drive,
Madison, WI 53706, USA

3Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street,
New York, NY 10012, USA

(Received 10 July 2010; revised 20 October 2010; accepted 22 October 2010;

first published online 1 February 2011)

We analyse a simple ‘Stokesian squirmer’ model for the enhanced mixing due to
swimming micro-organisms. The model is based on a calculation of Thiffeault &
Childress (Phys. Lett. A, vol. 374, 2010, p. 3487), where fluid particle displacements
due to inviscid swimmers are added to produce an effective diffusivity. Here we show
that, for the viscous case, the swimmers cannot be assumed to swim an infinite
distance, even though their total mass displacement is finite. Instead, the largest
contributions to particle displacement, and hence to mixing, arise from random
changes of direction of swimming and are dominated by the far-field stresslet term
in our simple model. We validate the results by numerical simulation. We also
calculate non-zero Reynolds number corrections to the effective diffusivity. Finally,
we show that displacements due to randomly swimming squirmers exhibit probability
distribution functions with exponential tails and a short-time superdiffusive regime,
as found previously by several authors. In our case, the exponential tails are due to
‘sticking’ near the stagnation points on the squirmer’s surface.

Key words: mixing, micro-organism dynamics

1. Introduction
Swimming creatures affect their environment in many ways, and one which has

received attention recently is how they mix the surrounding fluid. This phenomenon
is called biogenic mixing or biomixing. The most striking and controversial setting is
the ocean: Dewar et al. (2006) suggested that marine life might have an impact on
vertical mixing in the ocean.

Katija & Dabiri (2009) proposed that the dominant effect involved in biomixing is
the mass displacement due to a swimming body. This phenomenon is called Darwinian
drift, after Darwin (1953), though the displacement due to a moving cylinder was
obtained by Maxwell (1869). Thiffeault & Childress (2010) derived the effective
diffusivity of an ‘ideal gas’ of randomly distributed non-interacting swimmers, and
showed that it depends on the induced squared displacement of fluid particles by the
swimmers, as opposed to the net mass displaced.

† Email address for correspondence: jeanluc@mailaps.org
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Munk’s Idea

Though it had been mentioned earlier, the first to seriously consider the
role of ocean biomixing was Walter Munk (1966):

“. . . I have attempted, without much success, to interpret [the eddy
diffusivity] from a variety of viewpoints: from mixing along the ocean
boundaries, from thermodynamic and biological processes, and from
internal tides.”

11 / 38



Ocean biomixing: Basic observations

The idea lay dormant for almost 40 years; then

• Huntley & Zhou (2004) analyzed swimming of 100 (!) species,
ranging from bacteria to blue whales. Typical turbulent energy
production is ∼ 10−5 W kg−1. Total is comparable to energy
dissipation by major storms.

• Another estimate comes from the solar energy captured: 63 TeraW,
something like 1% of which ends up as mechanical energy (Dewar
et al., 2006).

• Kunze et al. (2006) find that turbulence levels during the day in an
inlet were 2 to 3 orders of magnitude greater than at night, due to
swimming krill.

• However, Kunze has failed to find this effect again on subsequent
cruises. Visser (2007) has questioned whether small-scale turbulence
can lead to overturning.

12 / 38



In situ experiments

Katija & Dabiri (2009) looked at jellyfish:

play movie (Palau’s Jellyfish Lake.) Correct length scale is path length?
13 / 38
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Displacement by a moving body

Maxwell (1869); Darwin (1953); Eames et al. (1994)

14 / 38



A sequence of kicks

Inspired by Einstein’s theory of dif-
fusion (Einstein, 1956): a test particle
initially at x(0) = 0 undergoes N
encounters with an axially-symmetric
swimming body:

x(t) =
N∑

k=1

∆L(ak , bk) r̂k

∆L(a, b) is the displacement, ak , bk
are impact parameters, and r̂k is a di-
rection vector.

L

a

target particle

swimmer

b

�

(a > 0, but b can have ei-

ther sign.)
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After squaring and averaging, assuming isotropy:〈
|x|2
〉

= N
〈
∆2

L(a, b)
〉

where a and b are treated as random variables with densities

dA/V = 2da db/V (2D) or 2πa da db/V (3D)

Replace average by integral:〈
|x|2
〉

=
N

V

∫
∆2

L(a, b)dA

Writing n = 1/V for the number density (there is only one swimmer)
and N = Ut/L (L/U is the time between steps):

〈
|x|2
〉

=
Unt

L

∫
∆2

L(a, b) dA

16 / 38



Effective diffusivity

Putting this together,〈
|x|2
〉

=
2Unt

L

∫
∆2

L(a, b) da db = 4κt, 2D

〈
|x|2
〉

=
2πUnt

L

∫
∆2

L(a, b)a da db = 6κt, 3D

which defines the effective diffusivity κ.

If the number density is low (nLd � 1), then encounters are rare and we
can use this formula for a collection of particles.

17 / 38



A ‘gas’ of swimmers
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y

play movie 100 cylinders, box size = 1000
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How well does the dilute theory work?

0 20 40 60 80 100
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Squirmers: The viscous world

Considerable literature on transport due to microorganisms: Wu & Libchaber

(2000); Hernandez-Ortiz et al. (2005); Saintillian & Shelley (2007); Ishikawa & Pedley (2007);

Underhill et al. (2008); Ishikawa (2009); Leptos et al. (2009)

Lighthill (1952), Blake (1971), and more recently Ishikawa et al. (2006)
have considered squirmers:

• Sphere in Stokes flow;

• Steady velocity specified
at surface, to mimic
cilia;

• Steady swimming
condition imposed (no
net force on fluid).

(Drescher et al., 2009) (Ishikawa et al., 2006)
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Particle motion for squirmer

A particle near the squirmer’s swimming axis
initially (blue) moves towards the squirmer.

After the squirmer has passed the particle fol-
lows in the squirmer’s wake.

(The squirmer moves from bottom to top.)

play movie

21 / 38
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Squirmers: Trajectories

The two peaks in the displacement plot come from ‘incomplete’
trajectories:

b/L = 0 b/L = 0.5 b/L = 1

For long path length, the effective diffusivity is independent of the
swimming path length, and yet the dominant contribution arises from the
finiteness of the path (uncorrelated turning directions).
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Squirmers: Transport
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New effects are being included

In particular, Pushkin and Yeomans confirm that in many cases transport
is dominated by entrainment rather than drift:

Dentr ∼
1

2d
nU`Ventr

Fluid Mixing by Curved Trajectories of Microswimmers

Dmitri O. Pushkin* and Julia M. Yeomans

The Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, United Kingdom
(Received 23 July 2013; published 31 October 2013)

We consider the tracer diffusion Drr that arises from the run-and-tumble motion of low Reynolds

number swimmers, such as bacteria. Assuming a dilute suspension, where the bacteria move in

uncorrelated runs of length �, we obtain an exact expression for Drr for dipolar swimmers in three

dimensions, hence explaining the surprising result that this is independent of �. We compare Drr to the

contribution to tracer diffusion from entrainment.

DOI: 10.1103/PhysRevLett.111.188101 PACS numbers: 47.63.Gd, 64.70.pv, 82.70.�y, 87.16.Uv

As microswimmers, such as bacteria, algae, or active
colloids, move they produce long-range velocity fields
which stir the surrounding fluid. As a result particles and
biofilaments suspended in the fluid diffuse more quickly,
thus helping to ensure an enhanced nutrient supply.
Following the early studies of mixing in concentrated
microswimmer suspensions [1–3], recent experiments
have demonstrated enhanced tracer diffusion in dilute sus-
pensions of Chlamydomonas reinhardtii, Escherichia coli,
and self-propelled particles [4–8]. Simulations have found
similar behavior [9–11] and microfluidic devices exploit-
ing the enhanced transport due to motile organisms have
been suggested [12,13]. However, a theoretical description
of fluctuations and tracer mixing in active systems remains
a challenge even for very dilute suspensions of micro-
swimmers. The statistics of fluid velocity fluctuations
was studied in [14–16]. As the tracer displacements at
short times are proportional to fluid velocities, these results
characterize the short-time statistics of tracer displace-
ments. In particular, the fluid velocity fluctuations turn
out, generically, non-Gaussian. Features of the long-time
tracer displacement statistics remain unknown.

The Reynolds number associated with bacterial swim-
ming is �10�4–10�6. Therefore, the flow fields that result
from the motion obey the Stokes equations and the far
velocity field can be described by a multipole expansion.
The leading order term in this expansion, the Stokeslet (or
Oseen tensor), which decays with distance �r�1, is the
flow field resulting from a point force acting on the fluid.
However biological swimmers, which are usually suffi-
ciently small that gravity can be neglected, move autono-
mously and therefore have no resultant force or torque
acting upon them. Hence, the Stokeslet term is zero and
the flow field produced by the microswimmers contains
only higher order multipoles, for example, dipolar contri-
butions, �1=r2, and quadrupolar terms, �1=r3.

The absence of the Stokeslet term has important reper-
cussions for the way in which tracer particles are advected
by swimmers. The angular dependences of the dipolar
velocity field—shown in Fig. 1—and of higher order multi-
poles of the flow field lead to looplike tracer trajectories.

For a distant swimmer, moving along an infinite straight
trajectory these loops are closed [17] and would not lead to
enhanced tracer diffusion.
The paths of bacteria or active colloids are, however, far

from infinite straight lines. For example, periodic tumbling
(abrupt and substantial changes in direction) is a well-
established mechanism by which microorganisms such as
E. coli can move preferentially along chemical gradients.
Even in the absence of tumbling, microswimmers typically
have curved paths due to rotational diffusion or nonsym-
metric swimming strokes. For noninfinite swimmer trajec-
tories tracers no longer move in closed loops and the
swimmer reorientations cause enhanced diffusion [11]. In
this Letter we obtain an exact expression for the diffusion
constant Drr due to uncorrelated random reorientations of
dipolar swimmers in three dimensions. The result allows us
to explain the surprising observation [11] that, for dipolar
swimmers in 3D, the diffusivity is independent of the
swimmer run length. We then extend our results to give
scaling arguments for Drr for swimmers confined to gen-
eral dimensions d (but retaining the 3D nature of the flow
field) and a flow field that decays as r�m where, for
example, m ¼ 2 corresponds to dipolar swimmers such

(b)

(c)

(d)

FIG. 1 (color online). (a) The angular dependence of the
dipolar flow field. The velocity decays as r�2, where r is the
distance from the swimmer. (b) A typical, closed-loop tracer
trajectory for an infinite, straight swimmer path and tracer
velocity� swimmer velocity. (c) A typical trajectory for a finite
swimmer path. (d) A typical entrained trajectory, for an infinite
swimmer path, and tracer close to the swimmer [17].
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Some dampened enthusiasm for ocean biomixing

Journal of Marine Research, 69, 591–601, 2011

Fluid mixing by swimming organisms in the
low-Reynolds-number limit

by Eric Kunze1

ABSTRACT
Recent publications in the fluid physics literature have suggested that low-Reynolds-number swim-

ming organisms might contribute significantly to ocean mixing. These papers have focussed on the
mass transport due to fluid capture and disturbance by settling or swimming particles based on classi-
cal fluid mechanics flows but have neglected the role of molecular property diffusion. Scale-analysis
of the property conservation equation finds that, while properties with low molecular diffusivities can
have enhanced mixing for typical volume fractions in aggregations of migrating zooplankton, this
mixing is still well below that due to internal-wave breaking so unlikely to be important in the ocean.

1. Introduction

Recent interest has been sparked into whether the motile ocean biosphere can contribute
significantly to ocean mixing. Energetic arguments (Munk, 1966; Dewar et al., 2006) sug-
gest that up to 1 TW might be available while scale-analysis indicates that aggregations of
swimming marine organisms ranging in size from O(1-cm) krill to O(1-m) cetaceans (Hunt-
ley and Zhou, 2004) might be able to generate high-Reynolds-number turbulent kinetic
energy dissipation rates ε ∼ O(10−5 W kg−1). Early observational support for such num-
bers (Kunze et al., 2006) was not borne out by subsequent more extensive microstructure
measurements which found that at least 90% of the time either (i) dissipation rates ε were
not significantly higher during dawn and dusk migrations of acoustic backscattering layers
(Rippeth et al., 2007), (ii) dissipation rates were elevated in aggregations but two orders of
magnitude below the predictions of Huntley and Zhou (Rousseau et al., 2010; Lorke and
Probst, 2010), or (iii) though dissipation rates were elevated, mixing efficiencies Γ were
very low (Gregg and Horne, 2009).

Another line of research suggests that swimming or settling particles could induce signif-
icant mixing without generating turbulence by dragging captured fluid impelled by inertial
or viscous forces behind them. These studies have invoked Darwin’s (1953) drift flow as
a starting point although this flow was shown to be ill-defined by Eames et al. (1994).
Both idealized low- and high-Reynolds-number flows have been considered. Katija and

1. Applied Physics Laboratory, University of Washington, Seattle, Washington, 98105, U.S.A. email:
kunze@apl.washington.edu
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Recent experiments back Kunze

Direct observation of biomixing by vertically migrating zooplankton

Christian Noss * and Andreas Lorke

Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany

Abstract

The potential contribution of swimming zooplankton to the vertical mixing of stratified waters has been the
topic of an ongoing scientific debate. Current estimates, which are primarily based on scale analyses and
numerical simulations, range from negligible effects to significant contributions that are comparable in magnitude
to physical driving forces, such as wind and tides. Here, we analyzed laboratory observations of fluid mixing that
are caused by vertically migrating zooplankton (Daphnia magna) in a density-stratified water column. Mixing
rates were quantified at the scale of individual organisms in terms of the dissipation rates of small-scale spatial
variance of tracer concentration measured by laser-induced fluorescence. At the bulk scale, we analyzed temporal
changes in the mean density stratification. Organism and bulk scale observations were used to estimate apparent
diffusion coefficients in trails of individuals and organism groups. Mean diffusivities of 0.8–5.1 3 1029 m2 s21,
which were averaged over trail volumes of 1.5–13 3 1025 m3, are on the same order of magnitude as the molecular
diffusivity of salt. A comparable diffusivity (1.1 3 1029 m2 s21) was estimated on the bulk scale, and the initial
density stratification, although frequently passed by migrating Daphnia, was preserved over the 5 d experimental
period. The present results agree with scaling arguments and suggest the negligible enhancement of vertical
transport in comparison with the turbulent mixing that is typically observed in oceans and lakes.

The contribution of the biosphere to large-scale vertical
transport and to the mixing of heat and solutes in stratified
oceans and lakes has been the topic of ongoing scientific
debate. Dewar et al. (2006) estimated a global rate at which
mechanical energy is produced by swimming animals of
1012 W, and Huntley and Zhou (2004) estimated a rate on
the order of magnitude O , 1025 W kg21 within animal
aggregations. Therefore, biologically induced production
rates of kinetic energy are on the same order of magnitude
as those kinetic energy production rates that are caused by
major winds and tides and also can be expected to
contribute significantly to mixing and to diapycnal
transport. A first observation in a dense swarm of krill
(Kunze 2011) supports these estimations. Although further
field measurements in animal aggregations revealed elevat-
ed dissipation rates of kinetic energy (Lorke and Probst
2010; Rousseau et al. 2010), these measurements were two
orders of magnitude below the magnitude that was
predicted by Huntley and Zhou (2004) or revealed a low
mixing efficiency (Gregg and Horne 2009).

However, experimental observations (Kunze et al. 2006;
Lorke and Probst 2010; Rousseau et al. 2010) predomi-
nantly focused on the turbulent kinetic energy dissipation
rates around somewhat larger organisms and within
aggregations (O , 1 cm to O , 1 m), which are associated
with higher Reynolds number flows. Additionally, abun-
dant, but small, organisms, such as zooplankton, poten-
tially contribute to mixing and transport because these
organisms often cross regions of strong vertical gradients
(e.g., the thermocline during diel vertical migration). Visser
(2007) argued that the mixing efficiency of small (O # 1 cm)
organisms is low due to the small size of the produced
hydrodynamic disturbances. Thus far, all referenced
estimations and measurements consider turbulence to be

the major source for mixing, where the mixing efficiency is
limited by the size of the overturning length scale, which is
assumed to be similar to organism size. These consider-
ations neglect fluid transport by fluid drift (Katija 2012).

The mixing due to drift is also related to the swimming
mode (Jiang and Strickler 2007) and could be equally
efficient for all sizes (Katija and Dabiri 2009) or even
higher for low–Reynolds number swimmers (Thiffeault and
Childress 2010). Experimental observations of the drift
behind a swimming jellyfish (Katija and Dabiri 2009), as
well as numerical simulations (Dabiri 2010; Thiffeault and
Childress 2010), showed that fluid can be displaced over
distances that are much larger than the organism body size.
The apparent efficiency of simulated transport and mixing,
however, strongly depends on the applied model assump-
tions and boundary conditions. Dabiri (2010) estimated
diffusivities that were three orders of magnitudes higher
than the molecular diffusivity of heat for passively moving
individuals in dense aggregations using numerical simula-
tions of the velocity field in a stratified inviscid fluid.
Following Leshansky and Pismen (2010), transport and
mixing will be less efficient if the organisms are self-
propelled (i.e., described as force dipoles).

Kunze (2011) criticized the application of the ideal flow
theory for modeling transport and mixing by small
organisms. First, viscous boundary layers would inject
vorticity into their wakes and, hence, develop into
turbulence at high Reynolds numbers. Second, molecular
diffusion in the cross-flow direction potentially short-
circuits the shear dispersion, even if viscosity enhances
the drift volume at low Reynolds numbers. Using scale
analyses, Kunze (2011) found enhanced eddy diffusivities
caused by aggregated migrating zooplankton that were,
however, negligible compared with typical diffusivities in
the ocean (e.g., caused by internal wave breaking).
Nevertheless, a central presumption of this scale analysis* Corresponding author: noss@uni-landau.de

Limnol. Oceanogr., 59(3), 2014, 724–732
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More refinements of the model

Enhanced diffusion of tracer particles in dilute
bacterial suspensions

Alexander Morozov* and Davide Marenduzzo

Swimming bacteria create long-range velocity fields that stir a large volume of fluid and move around

passive particles dispersed in the fluid. Recent experiments and simulations have shown that long-time

mean-squared displacement of passive particles in a bath of swimming bacteria exhibits diffusive

behaviour with an effective diffusion coefficient significantly larger than its thermal counterpart. A

comprehensive theoretical prediction of this effective diffusion coefficient and the understanding of the

enhancement mechanism remain a challenge. Here, we adapt the kinetic theory by Lin et al., J. Fluid

Mech., 2011, 669, 167 developed for ‘squirmers’ to the bacterial case to quantitatively predict enhanced

diffusivity of tracer particles in dilute two- and three-dimensional suspensions of swimming bacteria. We

demonstrate that the effective diffusion coefficient is a product of the bacterial number density, their

swimming speed, a geometric factor characterising the velocity field created by a single bacterium, and a

numerical factor. We show that the numerical factor is, in fact, a rather strong function of the system

parameters, most notably the run length of the bacteria, and that these dependencies have to be taken

into account to quantitatively predict the enhanced diffusivity. We perform molecular-dynamics-type

simulations to confirm the conclusions of the kinetic theory. Our results are in good agreement with the

values of enhanced diffusivity measured in recent two- and three-dimensional experiments.

1 Introduction

Recent interest in suspensions of self-propelled colloidal
particles stems from their relevance to a variety of disciplines.1

In physics, they provide one of the simplest models to under-
stand statistical mechanics of out-of-equilibrium systems2 and
hydrodynamics and rheology of active matter.3,4 In biology, the
motility of bacteria and eukaryotic microorganisms is linked to
the understanding of various diseases,5 fertility6 and biomixing
in oceans.7 In engineering, it has been demonstrated that
motile particles can be made to perform work8–10 and deliver
cargo.11

Bacteria are one of the most readily available realisations of
self-propelled particles. Their individual motility and collective
behaviour have been extensively studied.12,13 Many species
propel by pushing the surrounding uid backwards by rotating
long thin agella. The propulsive force applied to the uid is
then compensated by the drag the uid exerts on the bacterium.
Thus, locally, bacteria act as self-propelled force-dipoles that
stir the uid in a large volume around them. The long-ranged
velocity elds created by bacteria result in an inducedmotion of
passive particles suspended in the uid such as dead bacteria,
nutrients, small droplets of other uids, etc. This so-called
enhanced diffusion is potentially relevant for inducing feeding
currents around microorganisms and biomixing in oceans.7

A systematic study of enhanced diffusion started with the
pioneering work by Wu and Libchaber,14 who measured the
effective diffusion coefficient of large colloidal particles in an
E. coli suspension in a quasi-2D free standing soap lm. Wu and
Libchaber14 concluded that at long times colloidal particles
behaved diffusively with the effective diffusion coefficient being
about 100 times larger than the thermal one. Since then many
studies have conrmed similar behaviour. Long-time diffusive
behaviour of tracers was observed in dilute suspensions of
E. coli,15–20 B. subtilis,21 alga Chlamydomonas reinhardtii,22,23 and
synthetic swimmers,17 with experiments performed in quasi-2D
thin lms14,17,19,21,23 or 3D geometries.15,16,18,20,22 These studies
employed either colloidal particles or non-motile bacteria as
tracers, both comparable in size with the swimmers, with the
exception of the work by Kim and Breuer,15 who considered
diffusion of small Dextranmolecules in a bath of E. coli bacteria.
On the theoretical side, simulations of tracers with self-
propelled particles of various types conrm diffusive behav-
iour24–26 with a diffusion coefficient signicantly larger than its
equilibrium value in the absence of swimmers.

Experiments,17,19,20,22 theory,19,20,24,26–29 and simulations25,26

provide evidence that the enhanced diffusion coefficient scales
linearly with the so-called active ux: the product of the number
density of swimmers n and their swimming speed U. In order to
obtain a quantity of the same dimension as the diffusion coef-
cient, the active ux should be multiplied by a length scale to
the fourth power. The precise understanding of the origin of
this length scale and the value of the numerical prefactor in the
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Chlamydomonas reinhardtii

play movie

[Guasto, J. S., Johnson, K. A., & Gollub, J. P. (2010). Phys. Rev. Lett. 105, 168102]
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Probability density of displacements

Non-Gaussian PDF with ‘exponential’ tails:

[Leptos, K. C., Guasto, J. S., Gollub, J. P., Pesci, A. I., & Goldstein, R. E. (2009).

Phys. Rev. Lett. 103, 198103]
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Probability density of displacements

Leptos et al. (2009) claim a reasonable fit of their PDF with the form

P∆t(∆x) =
1− f√
2π δg

e−(∆x)2/2δ2
g +

f

2δe
e−|∆x |/δe

They observe the scalings δg ∼ Ag (∆t)1/2 and δe ∼ Ae(∆t)1/2, where Ag

and Ae depend on φ.

They call this a diffusive scaling, since ∆x ∼ ∆t1/2. Their point is that
this is strange, since the distribution is not Gaussian.

Commonly observed in diffusive processes that are a combination of
trapped and hopping dynamics (Wang et al., 2012).
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PDF: Theory vs experiment
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The normalized PDF for experimental data (dashed) agrees well with
simple swimmer models. Eckhardt & Zammert (2012) have a
phenomenological model.
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Summary

H−1 as a measure of mixing:

• Allows analytical progress (bounds).

• Related to ‘Bressan conjecture.’

Viscoelastic mixing:

• A fairly open area. . .

• Unfortunately has not caught on yet.

Biomixing:

• Settled in the ocean case?

• Interest has shifted to microswimmers.

• Many more lab experiments.

• We understand the details better (probabilistic tools).

• The approach developed at the IMA has been used and refined by
others. Compares well to data and numerical experiments.
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