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the taffy puller

Taffy is a type of candy.

Needs to be pulled: this
aerates it and makes it
lighter and chewier.

We can assign a growth:
length multiplier per
period.

(Here (1 +
√

2)2. . . more

later.)

[movie by M. D. Finn]

play movie
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http://www.math.wisc.edu/~jeanluc/movies/taffy.mp4


making candy cane

play movie

[Wired: This Is How You Craft 16,000 Candy Canes in a Day]
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http://www.math.wisc.edu/~jeanluc/movies/candy_cane.mp4
http://www.wired.com/design/2012/12/st_makingmints/


four-pronged taffy puller

play movie http://www.youtube.com/watch?v=Y7tlHDsquVM

[studied in detail by Halbert & Yorke (2013)] 4 / 33

http://www.math.wisc.edu/~jeanluc/movies/four_rod_puller.mp4
http://www.youtube.com/watch?v=Y7tlHDsquVM


the mixograph

Experimental device for kneading bread dough:

play movie

[Department of Food Science, University of Wisconsin. Photos by J-LT.]
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http://www.math.wisc.edu/~jeanluc/movies/breadlab.mp4


the mixograph as a braid

Encode the topological information
as a sequence of generators of the
Artin braid group Bn.

Equivalent to the 7-braid

σ3σ2σ3σ5σ
−1
6 σ2σ3σ4σ3σ

−1
1 σ−1

2 σ5

The growth is the largest root of

x8 − 4x7 − x6 + 4x4 − x2 − 4x + 1

' 4.186

Compare to taffy pullers: 5.828
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braids and rod-stirring

play movie play movie

[Boyland, P. L., Aref, H., & Stremler, M. A. (2000). J. Fluid Mech. 403, 277–304;

Simulations by M. D. Finn, S. E. Tumasz, and J-LT.]
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http://www.math.wisc.edu/~jeanluc/movies/boyland1.avi
http://www.math.wisc.edu/~jeanluc/movies/boyland2.avi


mathematical description

Periodic stirring protocols in two dimensions can be described by a
homeomorphism ϕ : S→ S, where S is a surface.

For instance, in a closed circular container,

• ϕ describes the mapping of fluid elements after one full period of
stirring, obtained by solving the Stokes equation;

• S is the disc with holes in it, corresponding to the stirring rods.

Goal: Topological characterization of ϕ.

[The theory extends to handlebodies, but not as relevant for applications. . . ]
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isotopy

ϕ and ψ are isotopic if ψ can be continuously ‘reached’ from ϕ without
moving the rods. Write ϕ ' ψ.

(Defines isotopy classes.)

Convenient to think of isotopy in terms of material loops. Isotopic maps
act the same way on loops (up to continuous deformation).

(Loops will always mean essential loops.)
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Thurston–Nielsen classification theorem

Theorem

ϕ is isotopic to a homeomorphism ψ, where ψ is in one of the following
three categories:

finite-order for some integer k > 0, ψk ' identity;

reducible ψ leaves invariant a disjoint union of essential simple
closed curves, called reducing curves;

pseudo-Anosov ψ leaves invariant a pair of transverse measured singular
foliations, Fu and Fs, such that ψ(Fu, µu) = (Fu, λ µu)
and ψ(Fs, µs) = (Fs, λ−1µs), for dilatation λ > 1.

The three categories characterize the isotopy class of ϕ.

We want pseudo-Anosov for good mixing.
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the topological program

• Consider a motion of stirring elements, such as rods.

• Determine if the motion is isotopic to a pseudo-Anosov mapping.

• Compute topological quantities, such as foliation, entropy, etc.

• Analyze and optimize.
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train tracks: computing entropy and foliations

play movie

‘Figure-8’ motion: σ−2
2 σ2

1

⇐⇒

[Gouillart et al. (2007)]

Thurston introduced train tracks as a way of characterizing the measured
foliation. The name stems from the ‘cusps’ that look like train switches.
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http://www.math.wisc.edu/~jeanluc/movies/fig8_exp_ghostrods.avi


train track map for figure-eight

a 7→ a 2̄ ā 1̄ a b 3̄ b̄ ā 1 a , b 7→ 2̄ ā 1̄ a b

Easy to show that this map is efficient: under repeated iteration,
cancellations of the type a ā or b b̄ never occur.

[There are algorithms, such as Bestvina & Handel (1995), to find efficient train tracks.

(Toby Hall has an implementation in C++.)]
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topological entropy

As the TT map is iterated, the number of symbols grows exponentially, at
a rate given by the topological entropy, log λ. This is a lower bound on
the minimal length of a material line caught on the rods.

Find from the TT map by Abelianizing: count the number of occurences
of a and b, and write as matrix:(

a
b

)
7→

(
5 2
2 1

)(
a
b

)

The largest eigenvalue of the matrix is λ = (1 +
√

2)2 ' 5.83. Hence,
asymptotically, the length of the ‘blob’ is multiplied by 5.83 for each full
stirring period.

[This is the growth for the 3 and 4-pronged taffy pullers.]
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optimization

• Consider periodic lattice of rods.

• Move all the rods such that they execute the Boyland et al. (2000)
rod motion (Thiffeault & Finn, 2006; Finn & Thiffeault, 2011).

• The dilatation per period is χ2, where χ = 1 +
√

2 is the Silver Ratio!

• This is optimal for a periodic lattice of two rods (Follows
from D’Alessandro et al. (1999)).
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silver mixers

• The designs with dilatation given by the silver ratio can be realized
with simple gears.

• All the rods move at once: very efficient.

play movie
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http://www.math.wisc.edu/~jeanluc/movies/gears.mpg


silver mixers: building one out of Legos

play movie
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http://www.math.wisc.edu/~jeanluc/movies/LegoExp_topside_view.avi


4 + 1 rods

play movie

[See Finn, M. D. & Thiffeault, J.-L. (2011). SIAM Rev. 53 (4), 723–743 for proofs,

heavily influenced by work on π1-stirrers of Boyland, P. L. & Harrington, J. (2011).

Algeb. Geom. Topology, 11 (4), 2265–2296.]
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http://www.math.wisc.edu/~jeanluc/movies/LegoExp.avi


ghost rods (‘tiges fantômes’)

Topological analysis can be done on other
objects than rods – for instance, islands or
unstable periodic orbits.

We simply follow the islands and examine the
braid they form, which gives us bounds on
topological entropy.

In this framework we call the islands ghost rods.

[Gouillart, E., Finn, M. D., & Thiffeault, J.-L. (2006).

Phys. Rev. E, 73, 036311]

[implemented by Stremler & Chen (2007); Thiffeault

et al. (2009); Binder (2010); Stremler et al. (2011)]
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ghost rods (cont’d)

One of the best examples of ghost rods is from Stremler et al. (2011):

The islands are made to follow the σ2σ
−1
1 stirring protocol by clever wall

motions! (viscous Stokes flow)

[Stremler, M. A., Ross, S. D., Grover, P., & Kumar, P. (2011). Phys. Rev. Lett. 106,

114101]

play movie
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http://www.math.wisc.edu/~jeanluc/movies/Stremler2011_movie.mp4


oceanic float trajectories
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oceanic floats: data analysis

What can we measure?

• single-particle dispersion (not a good use of all data)

• correlation functions (what do they mean?)

• Lyapunov exponents (some luck needed!)

Another possibility:

Compute the braid group generators σi for the float trajectories (convert
to a sequence of symbols), then look at how loops grow. Obtain a
topological entropy for the motion (similar to Lyapunov exponent).
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iterating a loop

It is well-known that the entropy can be obtained by applying the motion
of the punctures to a closed curve (loop) repeatedly, and measuring the
growth of the length of the loop (Bowen, 1978).

The problem is twofold:

1 Need to keep track of the loop, since its length is growing
exponentially;

2 Need a simple way of transforming the loop according to the motion
of the punctures.

However, simple closed curves are easy objects to manipulate in 2D. Since
they cannot self-intersect, we can describe them topologically with very
few numbers.
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solution to problem 1: loop coordinates

What saves us is that a closed loop can be uniquely reconstructed from
the number of intersections with a set of curves. For instance, the
Dynnikov coordinates involve intersections with vertical lines:

2

30 0

1
4 4 4

2 2
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solution to problem 2: action on coordinates

Moving the punctures according to a braid generator changes some
crossing numbers:

�1
-1

There is an explicit formula for the change in the coordinates! [Dynnikov

(2002); Moussafir (2006); Hall & Yurttaş (2009); Thiffeault (2010)]

25 / 33



growth of L

For a specific rod motion, say as given by the braid σ−1
3 σ−1

2 σ−1
3 σ2σ1, we

can easily see the exponential growth of L and thus measure the entropy:
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growth of L (2)
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m is the number of times the braid acted on the initial loop.

[Moussafir, J.-O. (2006). Func. Anal. and Other Math. 1 (1), 37–46]
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oceanic floats: entropy

10 floats from Davis’ Labrador sea data:

0 100 200 300
10

0

10
1

10
2

t (days)

L
(u

)
   entropy = 0.0171

crossings = 126

Floats have an entanglement time of about 50 days — timescale for
horizontal stirring.

Source: WOCE subsurface float data assembly center (2004)
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http://wfdac.whoi.edu/


Lagrangian Coherent Structures

• There is a lot more information in the
braid than just entropy;

• For instance: imagine there is an
isolated region in the flow that does not
interact with the rest, bounded by
Lagrangian coherent structures (LCS);

• Identify LCS and invariant regions from
particle trajectory data by searching for
curves that grow slowly or not at all.

• [see Haller, G. & Beron-Vera, F. J. (2012).

Physica D, 241 (20), 1680–1702.]
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double-gyre coherent structures
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play movie [Allshouse, M. R. & Thiffeault, J.-L. (2012). Physica D, 241 (2), 95–105]
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http://www.math.wisc.edu/~jeanluc/movies/dgPoincare4.mp4


some research directions

• The nature of the isotopy between the pA and real system.

• Sharpness of the entropy bound (Tumasz & Thiffeault, 2013).

• Computational methods for isotopy class (random entanglements of
trajectories – LCS method, see Allshouse & Thiffeault (2012), ongoing
work also with Marko Budisic, Margaux Filippi, and Tom Peacock).

• ‘Designing’ for topological chaos (see Stremler & Chen (2007)).

• Combine with other measures, e.g., mix-norms (Mathew et al., 2005;
Lin et al., 2011; Thiffeault, 2012).

• We’re developing a Matlab toolbox — braidlab.

• 3D?! (lots of missing theory)
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http://bitbucket.org/jeanluc/braidlab
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