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The Mixing Enhancement Factor

The steady advection-diffusion equation
u(x) - VO — kA0 = s(x),

describes how a spatial source of passive scalar s(x) is stirred
by a velocity field u(x).

How well is the source spread out by the stirring? One
traditional measure is the variance ||||5 of the concentration
(assuming a zero mean concentration).

A related measure is the enhancement factor
E=10,/110]l, = 1,

which compares the variance to that in the absence of
stirring, [|0||,. Larger € implies more effective stirring.
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Two Optimization Problems

A natural question is then:

For a fixed source distribution, which velocity field maximizes
the enhancement factor?

This is a hard question. Let’s instead ask an easier, but still
relevant one:

For a fixed velocity field, which source distribution maximizes
the enhancement factor?

The attractive aspect of the source optimization problem is
that it has a simple mathematical answer, and the structure of
the solution sheds light on the velocity optimization problem.
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Source Optimization

Define the linear operators
L =u(x) -V —kA and L= —kA,

from which we can write the solution to advection-diffusion and
diffusion equation

f=1L"1s and g=2L"1s.
The enhancement factor is then
€2 = (s A ts) /(s A7 Ls),
where the self-adjoint operators A and A are
A=LL", A:=LL0" =k3(—A)?

and we have used the notation (-) to denote spatial integration.
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The Variational Problem

Maximizing € is now a simple problem in variational calculus,

2

5€2 = T <(2[—1s - 82A‘1s> 5s> — 0,

with solution
AA s = &%s.

This is an eigenvalue problem for the operator AAL The optimal
enhancement factor is given by its largest eigenvalue, and the
corresponding optimal source by the eigenfunction.

It is simple to show that this solution is a global maximum.

For numerical implementation, it is preferable to solve the
equivalent self-adjoint eigenvalue problem

(AYV2AAY2)r = €21, s=AY?r.
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A Uniform Flow

A

As a simple example, consider a spatially-uniform flow u(x) = U &,
along the x direction, in a periodic domain of size L.

The optimal enhancement factor is then

U212
E=4/14 —= = V1+Pe?
42K2

with optimal source
s(x) = Acos x + Bsinx

where we have defined the Péclet number Pe := UL/27k.

The mechanism is simple: the optimal source is such that ‘hot’ is
swept onto ‘cold’ and vice versa. We will see that this is a general
feature of optimal sources.
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A Perturbed Flow

Consider now a two-dimensional uniform flow along the x—axis
perturbed by a weak flow,

U(X,y) = Uéx +EU1(X7y)
where

ur(x,y) = uix(y) &x + ury(x) &y,

Because the base flow is in the &, direction, the u1x(y)éyx term is a
shear flow perturbation, and the uy,(x)é, term is a wavy flow
perturbation.

The modification to the enhancement factor can be computed
easily using perturbation theory.
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Shear vs Wavy Flow
Red = 'hot', Blue = 'cold’

Shear: the optimal source is  Wavy: no change to the
localized in regions of faster  optimal source.
flow.
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Cellular Flow

Consider now a cellular flow with streamfunction
Y(x,y) =sinx siny + 61 sin2x + J, sin 2x sin 2y

For 1 = 62 = 0, we find numerically the doubly-degeneratte
optimal sources:
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The optimal source avoids stagnation points. We still see the

tendency of hot to be swept onto cold.
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Perturbed Cellular Flow

Adding perturbations to the cellular flow breaks the symmetry and
thus the degeneracy of the optimal solution.
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Yet again the optimal source avoids stagnation points, hot is swept

onto cold, and faster regions are favored.
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Large Perturbations

Things can get wonky. ..

Again the optimal source avoids stagnation points, and hot is
swept onto cold.
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Dependence on Diffusivity
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The optimal source converges to an invariant pattern. For large k
case there are sources and sinks over some hyperbolic points.
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Dependence on Diffusivity (cont'd)

10°

Optimal source (solid line), and sin x and cos x reference sources

References

(dashed lines). For small k, the enhancement factor scales like x~1.
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Conclusions

In both the perturbation problem and the numerical examples,
the optimal source distributions tend to exhibit the following
features:

1. Avoidance of stagnation points of the flow, especially elliptic;

2. Localization over regions of rapid flow;

3. Alignment of the source contours perpendicular to the local
velocity, so that hot is swept onto cold and vice versa.

The optimization procedure is numerically straightforward.

We have also used a more general measure that weighs scalar
gradients differently, similar to the mix-norm.

We are also working on optimizing boundary sources (more
relevant in industrial problems).

Three-dimensionality (easy) and time-depence (tedious)
should be included.

Velocity optimization is the next stage (hard but fun).
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