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T he Hamiltonian Perspective

. Unified approach to various systems.

. Studying stability.

. Methods for taking advantage of
symmetries.



Canonical Variables

Hamilton's equations:
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Poisson bracket:
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Phase space volume is conserved:
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Form 2 N—tuplets:

2= (¢% pa), i=1,...2N.

OF 4ij 99

Lf,g] = YR

On In
Jc:
—In Opn

Je 1S called the cosymplectic form.



Noncanonical Coordinates

Generalization:
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Want energy to be conserved:

Hence, we require J¥ (and so [f, g])
to be antisymmetric.

Is this enough for the system
to be “Hamiltonian”?



J(z) is the Poisson-Bracket of a Hamiltonian
system if there exists a coordinate transforma-
tion which brings JY to the cosymplectic form,
Je.

Darboux’s Theorem

Conditions on J for this transformation to exist
are:

e det J # 0.

e Antisymmetry: [f,g9] = — g, f].

e Jacobi identity:

Lflg, hll+ g, [h, fIT+ [, [f 59l = 0.



More general theorem:

If det J = 0, can always find a transformation
to bring J to the form
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where the rank of J is 2N.
M — 2N independent null eigenvectors:
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The ¢(®)'s are called Casimir Invariants.

Casimirs are conserved:
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Free Rigid Body
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The Continuous Case
Sums — Integrals

For 2—D Euler: v = (=9y1,0z1), w = V24,
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Bracket : {F[w], Glw]} = /
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Now suppose we have two fields: (w,T),

Could build a bracket of the form:
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— Direct Product

More interesting choice is the Semidirect Prod-
uct:
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If we consider the Hamiltonian:
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we get the equations of motion:

Oow oT
a‘l‘[w?w]_%a

orT

If we let T =T — vy, we see that what we ob-
tained is a dissipationless version of the Boussi-
nesq equations for Rayleigh—Bénard convec-
tion:
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In Fourier space, this bracket looks like:
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Other systems that admit a noncanonical rep-
resentation:

e [ he Korteweg—deVries equation,
oru + udzu + 8£u = 0.

e 3—D ideal fluid.

e Compressible Reduced
Magnetohydrodynamics.
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Reduction

Casimirs reduce the dimension of the phase
Space accessible to the system.

e Free rigid body: (0,¢,,0,¢,1%) — (£1,42,43).

e Lagrangian variables — Euler variables. Hamil-
tonian independent of “identity” of fluid
particles.
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Summary

e Many problems, especially in fluid dynam-
ics, admit a noncanonical representation.

e Reduction is a method for taking advan-
tage of symmetries. Reduces size of phase
space.

e Do all noncanonical representations in Na-
ture come from a reduction?
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