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Stirring and Mixing at GFD: Back in the summer of ’99

• In ’99 I was a new postdoc at
Columbia.

• My project was on mixing,
about which I knew little.

• Stroke of luck! Bill Young
lectured on that very topic
that summer.

• These lectures were very
influential on me.
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The Volume

Claudia Pasquero and I edited the ’99 volume. Bill put an enormous
amount of work in polishing these notes. He even invited me to San Diego
after GFD to continue editing.

The volume contains many remarkable toy models that help understand
subtle effects, including patchiness created by a random birth-death
process.

3 / 37



The Volume (cont’d)

Bill’s writing is admirably lively:

Marbled endpapers in old books were produced by floating
coloured inks on water, stirring the surface, and then capturing
the swirls by carefuly lowering a sheet of paper onto the inky film.
This technique, probably originating in Persia in the 1400s, presses
hydrodynamic correlations into the service of art. Fortunately for
printers, and distressingly for statisticians, a single realization does
not resemble the blurry diffusion equation.

and more:

I have hinted darkly at problems associated with spatial filters.
These issues are largely ignored by optimistic scientists. The hope
is that scale separation justifies the application of diffusive closures
to the coarse-grained version of a single realization
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2002: Bounds on turbulent transport

• Charlie Doering, Fritz Busse,
Colm Caulfield, Rich Kerswell,
and Peter Constantin were
lecturers.

• Bounding turned out to be a
very rich source of Fellow’s
projects.

• Personally: this began a long
collaboration with Charlie. I
take some credit for turning
his mind to mixing.

• Charlie and the introduction of
mix-norms around that time
have brought the applied
analysts into the game.
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Mix-norms

Introduced by Mathew et al. (2003, 2005), with some later generalizations
by Doering & Thiffeault (2006).

For a concentration c(x, t), the H−1 norm of c is

‖c‖2H−1 =

∫
V
c (−∇2)−1 cdV.

The inverse (−∇2)−1 can be defined in Fourier space. Mix-norms
essentially smooth out the wrinkles in the concentration.

Mix-norms have the advantage that they nicely connect to mixing in the
sense of dynamical systems, and will decay even in the absence of
diffusion. They are very convenient for rigorous work, but also for
optimization (Lin et al., 2011a; Foures et al., 2014).

[Review: Thiffeault, J.-L. (2012). Nonlinearity, 25 (2), R1–R44]
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Sample recent result

As an example of the types of theorems being proved, here’s one by
Bedrossian et al. (2019):

They show that Navier–Stokes with random forcing will mix exponentially:

‖c‖H−s(t) ≤ D e−γt ‖c0‖Hs ,

that is, the norm of the concentration field decays at least exponentially
fast (no scalar diffusion here). This may seem obvious from the physicist’s
point of view, but is a hard challenge mathematically.

Proving something like this in the non-random setting? As the authors
have said: ‘maybe in a few hundred years.’

[Bedrossian, J., Blumenthal, A., & Punshon-Smith, S. (2019).

https://arxiv.org/abs/1905.03869]
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Biology at GFD

The first summer where GFD
tackled biology was 1994, with
Biophysical Models of Oceanic
Population Dynamics. Donald
Olson, Glenn Flierl, Daniel
Grunbaum, and Simon Levin were
lecturers.

In 2010, we had a summer on
Swirling and Swimming in
Turbulence with Glenn, Antonello
Provenzale, and myself as lecturers.
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More biology at GFD

In 2015 there was a summer on Fluid-Structure Interaction in the Living
Environment, with Mike Shelley and Peko Hosoi as lecturers. Peko
interpreted “living environment” loosely: she lectured about sports!

This is where we learned, for instance, why catchers do a forward-and-back
dance when catching a foul ball: the lift from the backspin causes a ribbon
trajectory.
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And more biology at GFD

In addition to the three summers, several of the Sears Lectures have had
biological themes:

• Geoff Spedding (2009)

• James D. Murray (2010)

• L. Mahadevan (2011)

• Mimi Koehl (2016)

• John O. Dabiri (2018)

• Lydia Bourouiba (2019)
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Biomixing: Stirring by swimming organisms

Katija & Dabiri (2009) looked at transport by jellyfish:

There was quite a stir at the
time about biomixing and its
possible role in the ocean.

The idea goes back to Walter
Munk, who dismissed it.
Revived by Bill Dewar and
others in the 00’s.

Since then I think the consensus

is that the effect is negligible, in

large part due to stratification

(Visser, 2007; Wagner et al.,

2014).

Still could have important local impact, and is more relevant for
micro-organisms. play movie
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Bioturbation

The earliest case studied of
animals ‘stirring’ their
environment is the subject of
Darwin’s last book.

This was suggested by his uncle
and future father-in-law Josiah
Wedgwood II, son of the famous
potter.

“I was thus led to conclude that all the
vegetable mould over the whole country
has passed many times through, and will
again pass many times through, the
intestinal canals of worms.”
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Displacement by a moving body

With Steve Childress and George Lin, we set out to use drift trajectories to
model mixing induced by swimmers.

Maxwell (1869); Darwin (1953)
13 / 37



A ‘gas’ of swimmers

Dilute theory: swimmers repeatedly ‘kick’ fluid particles. play movie
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[ Thiffeault, J.-L. & Childress, S. (2010). Phys. Lett. A, 374, 3487–3490

Lin, Z., Thiffeault, J.-L., & Childress, S. (2011b). J. Fluid Mech. 669, 167–177 ]
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Lab experiments

Around the same time precise experiments were being made, most notably
in the Gollub and the Goldstein groups:

play movie

[Guasto, J. S., Johnson, K. A., & Gollub, J. P. (2010). Phys. Rev. Lett. 105, 168102 ]
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Comparing to experiments of Leptos et al. (2009)
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Lett. 103, 198103

Thiffeault, J.-L. (2015). Phys. Rev. E, 92, 023023 ]
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More recent experiments of Ortlieb et al. (2019)

Formula for the effective diffusivity from Thiffeault (2015):

Deff = D0 +
(
0.266 + 3

4πβ
)
U n `4

[Ortlieb, L., Rafäı, S., Peyla, P., Wagner, C., & John, T. (2019). Phys. Rev. Lett. 122, 148101 ]
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GFD 2015: Stochastic Processes

2015 was a summer on Stochastic
Processes in Atmospheric and
Oceanic Dynamics. Charlie Doering
and Henk Dijkstra were lecturers.

I also learned a ton that summer from Oliver
Buhler, who gave some extra lectures to
help the fellows.
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Mean Exit Time equation

There is an equation which I think is underused in the study of fluid
transport:

The Mean Exit Time τ(x0, t0) is the expected time for a fluid particle,
starting at (x0, t0), to exit the system.

Remarkably, this satisfies a ‘backward’ advection-diffusion equation:

−∂t0τ − u · ∇0τ = D∇2
0τ + 1

Time is a passive scalar!

Exits are determined by setting τ = 0 on sections of the boundary.

Charlie D., Bill Y., and I did a project with Fellow Florence Marcotte to
study optimization of heat exchangers, where the goal is to get a fluid
particle to reach the boundary as fast as possible.
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Active Brownian particles

Microswimmers and active particles are often modeled as Brownian
particles with a propulsion, using an SDE such as

dX = U dt+
√

2DX dW1

dY =
√

2DY dW2

dθ =
√

2Dθ dW3

in its own rotating reference frame.

In terms of absolute x and y coordinates, this becomes

dx =
(
U dt+

√
2DX dW1

)
cos θ − sin θ

√
2DY dW2

dy =
(
U dt+

√
2DX dW1

)
sin θ + cos θ

√
2DY dW2

dθ =
√

2Dθ dW3 .
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Sample paths

• Swimmer swims a distance U/Dθ in a time 1/Dθ.

• Swimmer diffuses a distance
√
DX/Dθ in a time 1/Dθ.

• Peθ,X := U
Dθ
/
√

DX
Dθ

= U√
DθDX

measures the smoothness of the path.
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Fokker–Planck equation

The F–P equation for the probability density p(x, y, θ, t):

∂tp = −∇ · (u p−∇ · D p) + ∂2θ (Dθ p)

where the drift vector and diffusion tensor are respectively

u =

(
U cos θ
U sin θ

)

D =

(
DX cos2 θ +DY sin2 θ 1

2(DX −DY ) sin 2θ
1
2(DX −DY ) sin 2θ DX sin2 θ +DY cos2 θ

)
.

Note that ∇ := x̂ ∂x + ŷ ∂y (no θ).
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Boundary condition

For any fixed volume V we have

∂t

∫
V
p dV = −

∫
V

(
∇ · (u p−∇ · (D p))− ∂2θ (Dθ p)

)
dV

= −
∫
∂V
f · dS ,

where ∂V is the boundary of V , and the flux vector is

f = u p−∇ · (D p)− θ̂ ∂θ(Dθ p).

Thus, on the reflecting (impermeable) parts of the boundary we require
the no-flux condition

f · n = 0, on ∂Vrefl

where n is normal to the boundary.
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The shape of a 2D swimmer

In recent work with Hongfei Chen, we adapted this model to include the
shape of a swimmer as it interacts with boundaries:

Convex swimmer in its frame (X,Y ) and the fixed lab frame (x, y).

The swimming direction corresponds to ϕ = 0.

Qθ is a rotation matrix about a given center of rotation.

[Chen, H. & Thiffeault, J.-L. (2020). http://arxiv.org/abs/2006.07714] 24 / 37
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Swimmer touching a wall at y = 0

Denote by y∗(θ) the vertical coordinate of a swimmer with orientation θ
when it touches the wall.

Convex swimmer touching a horizontal wall at a corner point W :

The angle θ can vary from the right-tangency angle θ− to the
left-tangency angle θ+.

Range of y values:

y∗(θ) = − sin θX(ϕ)− cos θ Y (ϕ), θ− ≤ θ ≤ θ+.
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Wall distance function y∗(θ): needle

The needle has two corners; y∗(θ) =
1
2`|sin θ|
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Wall distance function y∗(θ): ellipse

The ellipse has no corners; y∗(θ) =
√
a2 sin2 θ + b2 cos2 θ
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Wall distance function y∗(θ): teardrop

The teardrop has a corner and a smooth boundary.
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Configuration space and drift in θ–y plane

Drift is U sin θ ŷ; no-flux condition forces swimmer to align with the wall.

Once the particle crosses θ = 0 (parallel to wall), it is pushed upward by
the drift.
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A Microswimmer in a Channel

For example, one application of this configuration space formalism is to
the transport of microswimmers in narrow channels:

A swimmer will turn around once in a while, effectively undergoing a 1D
random walk. What is the effective horizontal diffusion coefficient?
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Channel configuration space

Configuration space for the needle in of length ` = 1 in a channel of
width L = 1.05. (x not shown.)

A point in this space specifies the position and orientation of the swimmer.
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Reversal

Whenever the swimmer goes through one of the bottlenecks below, this
corresponds to a reversal of swimming direction.
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Mean Reversal Time

The mean reversal time τrev is

τrev = 1
4

∫ π

0

dϑ

P(ϑ)

where P(θ) is the invariant probability density for the swimmer.

Intuitively, small P corresponds to “bottlenecks” that dominate the
reversal time.

For the needle swimmer,

τrev ≈
π

2β
eβ, β = U`/4DY .

From this we get an effective diffusivity

Deff ≈ 1
2τrev U

2
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Conclusions

• Long tradition of studying stirring and mixing at the GFD program,
even when the summer was not specifically on this topic.
• Some important innovations were pioneered at the program.
• Transport and mixing of and due to microswimmers is an active area

of study.
• The interaction of microswimmers with boundaries is a huge topic,

and I apologize for not doing justice to the literature today, for lack of
time.
• Our focus is on modeling interactions using the rich concept of

configuration space, where we work on an extended phase space
involving all the degrees of freedom of the swimmer.
• Those degrees of freedom are limited by boudaries.
• Missing lots of effects! (Most notably, hydrodynamics!)
• Apologies to Fellows I worked with but whose work I didn’t cover:

Anshuman Roy, Michael Allshouse, Kiori Obuse, Amanda O’Rourke,
Tiffany Shaw,
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