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1 Winding around a single point
This lecture is on simple models of entanglement. Here entanglement is interpreted broadly,
and in particular it can apply to the two-dimensional trajectories of some particles, such
as ocean floats or a crowd of people. Figure 1(a) shows two such particles moving around
each other on the plane.

(a) (b)

Figure 1: Two particles moving in the plane.

If we plot time vertically, as in Fig. 1(b), we obtain a braid of two strands.
The first question we want to ask is, how do the particles wind around each other? Let

us assume that both particles are undergoing Brownian motion with some diffusivity D.
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(a) (b)

Figure 2:

We consider the vector z(t) = z1(t) − z2(t), which behaves like a Brownian particle of
diffusivity 2D (though we will drop the factor of two). Now the situation looks as in
Fig. 2(a), with a single Brownian particle. We define θ ∈ (−∞,∞) to be the total winding
angle of z(t) around the origin. What we are looking for is P (θ, t), the winding angle
distribution of a particle about the origin after a time t.

This problem was solved by Spitzer (1958). We shall solve it in a slightly different
way. Assume for now that our Brownian particle lives in a wedge of half-angle α, as in
Fig. 2(b). The Green’s function P (x, t;x0, 0) gives the probability of finding the particle
at x at time t, given that it started at x0 at time 0. It satisfies

∂P

∂t
= D∇2P, P (x, 0;x0, 0) = δ(x− x0). (1)

In the wedge region 2(b), we take reflecting boundary conditions at the two infinite walls:

n̂ · ∇P = 0 at each wall, (2)

where n̂ is the normal to the wall.
Solving 1 is a standard problem and can be done with separation of variables. There

is a certain rough beauty to the detailed solution of such problems, but in the interest of
brevity here is the final answer:

P (r, θ, t; r0, θ0, 0) =
1

4αDt
e−(r

2+r20)/4Dt

{
I0

( rr0
2Dt

)
+ 2

( ∑
k > 0 even

cos(νkθ) cos(νkθ0) +
∑

k > 0 odd

sin(νkθ) sin(νkθ0)

)
Iνk

( rr0
2Dt

)}
(3)
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where νk = πk/2α and Iν is a modified Bessel function of the first kind. Here (r, θ)
and (r0, θ0) are respectively the polar coordinates of x and x0. The solution (3) is taken
from Carslaw & Jaeger (1959, p. 379, Eq. (8)), after integrating their solution in z and
centering the wedge so θ = 0 is its bisector, as in Fig. 2(b).

The solution (3) is certainly valid for 0 < α < π, corresponding to a very thin wedge
interior (α → 0) or a very thin wedge exterior (α → π). What about α = π? Well, that
solution is still valid and does not reduce to the Green’s function on the plane: there is still
an infinitely thin plate along the negative real axis which reflects the Brownian particle.

But surely α > π is nonsense? Physically, yes. But mathematically, let’s see what
happens if we take the limit α→∞ (!), an infinite wedge angle. In (3) we have two sums,
one over even integers and the other over odd ones. In either sum, since νk = πk/2α, the
difference between two successive νk is

dνk = νk+2 − νk = π/α, (4)

which is of course small as α → ∞. Thus, in the limit as α → ∞, we can replace the
sums by integrals using (4) and obtain

P =
1

2πDt
e−(r

2+r20)/4Dt

∫ ∞
0

(sin(νθ) sin(νθ0) + cos(νθ) cos(νθ0)) Iν

( rr0
2Dt

)
dν (5)

or
P (r, θ, t; r0, θ0, 0) =

1

2πDt
e−(r

2+r20)/4Dt

∫ ∞
0

cos ν(θ − θ0) Iν
( rr0

2Dt

)
dν. (6)

Note that the I0 term in (3) vanishes in the limit, since it is divided by α with no com-
pensating sum in the numerator. We conclude that taking the limit α →∞ has caused no
catastrophe: Eq. (6) suffers from no obvious pathologies.

Let’s rewrite the Green’s function (6), which is a probability density function, in terms
of the scaled variables x = r/2

√
Dt, y = r0/2

√
Dt, and write θ for θ− θ0 without loss of

generality:

P (x, y, θ) =
2

π
e−(x

2+y2)

∫ ∞
0

cos νθ Iν(2xy) dν. (7)

For large t, the argument 2xy of the Bessel function is small, so we can use the asymptotic
form

Iν(x) ∼ 1

Γ(ν + 1)
(x/2)ν , x� 1. (8)

We also use the integral formula∫ ∞
0

cos νθ ξν dν = − log ξ

θ2 + log2 ξ
, 0 < ξ < 1, (9)
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Figure 3: The Cauchy–Lorentz distribution (11) for various y values.

to evaluate the integral in (7), and find

P (x, y, θ) ' − 2

π

log(xy)

θ2 + log2(xy)
e−(x

2+y2). (10)

The most interesting thing to us is the total probability of reaching a certain angle θ for
any x, so we integrate over x using log x � log y, since y is very small whereas x varies
from 0 to∞. Thus,∫ ∞

0

P (x, y, θ) dx ≈ 1

π

− log y

θ2 + log2 y
, y =

r0

2
√
Dt
� 1, (11)

where we also approximated e−y
2 ' 1, to obtain a consistent normalization in θ.

The probability density (11) is a Cauchy–Lorentz distribution in θ (see Fig. 3). This is
the probability of finding the particle at θ at time t, given that it started at θ = 0 and ra-
dius r0. Our taking the limit of infinite wedge angle has solved the problem: we now know
how many windings the particle makes around the origin, because it crosses a ‘branch cut’
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Figure 4: Cauchy distribution (red) compared to numerical simulations of a Brownian
process. We used 10,000 realizations of the Brownian motion, with Dt/r20 = 10.

each time it goes around, and ends up on a different Riemann sheet. The distribution is sin-
gular at y = 0: if the particle starts at the origin, then it’s impossible to define its Riemann
sheet.

The form (11) compares favorably with numerical simulations (Fig. 4), though there
are problems with the tails, as is obvious in Fig. 4. This is due to the scale-free nature of a
Brownian process: since the trajectory is rough on all scales, if the particle comes near the
origin it can wind an infinite number of times, causing the heavy tails of the Cauchy distri-
bution. But this cannot be simulated on a computer: the steps of the Brownian process are
necessarily discrete. The numerical distribution in Fig. 4 is closer to a hyperbolic secant,
with exponential tails, which is the distribution predicted for a fixed-stepsize random walk
rather than a Brownian process (Bélisle, 1989; Bélisle & Faraway, 1991).

2 Winding around two points
After considering the winding of a Brownian motion around one point in the plane, a
natural extension is to consider the winding of a Brownian motion around two points, as
depicted in Fig. 5(a). The history of a path can be encoded by a symbolic sequence of
generators a and b, which are defined in Fig. 5(b). The generator a corresponds to looping
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(a) (b)

Figure 5: (a) A Brownian motion winding around two points. (b) The generators a and b.
(Source: Wikipedia.)

clockwise around the left point, and b counterclockwise around the right point. The inverse
of the generators correspond to circling against the arrow direction. Hence, after a long
time, we can write a sequence such as abba−1bab−1 . . . that records the history of the path.
(We cancel out any adjacent inverse letters, such as aa−1.)

The set {a, b, a−1, b−1} generate the free group on two generators, F2. This group is
best represented as a tree, as in Fig. 6. The center is the identity element (the untangled
initial state, also called the root of the tree), and then from this initial configuration there
are four directions to go. Afterward there are always three directions that take us deeper
into the tree, and one which takes us back towards the root. Another standard way of
depicting a rooted tree is as in Fig. 7. From the top root node, there are N branches
leading down. Afterward, there are N − 1 branches leading down from each node. The
level of a node is defined as the shortest distance from the root node.

Now consider a random walk in this tree. At any step, the random walker chooses
a branch at random, with equal probability among the branches at that node, and jumps
along the chosen branch to an adjacent node. Question: what is the probability that the
walk ever returns to the root node, as a function of its starting depth?

This is a simple problem in probability. At a given depth, all the nodes are identical,
so we only care about the depth of the walk. Thus we write the depth of the walk as a
random walk (Xn)n≥0 on {0, 1, 2, . . . }. Here Xn = i means we are at depth i at time n. If
the walker is at depth 0, then the transition probability of going from depth 0 to depth 1 is

p0,1 = 1 (12)

since the walker has no other place to go! If the walker is at depth i > 0, there are N − 1
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Figure 6: Cayley graph for a free group with two generators. (Source: Wikipedia.)

Figure 7: A tree with N − 1 = 3 branches from each node, after level 0.
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branches leading down and 1 branch leading up, so the transition probabilities are

pi,i−1 =
1

N
=: p (prob. of going up); (13a)

pi,i+1 = 1− 1

N
=: q (prob. of going down). (13b)

Recall that a conditional probability is defined as

P(A |B) = P(A ∩B)/P(B). (14)

This is read as ‘the probability of event A occurring given that event B has occurred.’
P(A ∩B) is the probability of both A and B occurring together.

For some integer M , let T0,M be the first time that the walk (Xn)n≥0 hits 0 or M .
For 0 ≤ i ≤M , let

fM(i) = P(XT0,M = 0 |X0 = i), (15)

that is, the probability that the walk hits 0 first, given that it started at i.
The following relation holds:

fM(i) = pi,i−1 fM(i− 1) + pi,i+1 fM(i+ 1). (16)

In words: if we start from i, then two things can happen: we either move to i − 1 (with
probability pi,i−1) or to i + 1 (with probability pi,i+1). Afterward, though, our probability
of hitting 0 first must be dictated by fM(i−1) or fM(i+1), respectively. The relation (16)
is valid for 1 ≤ i ≤M − 1, since we know that

fM(0) = 1, (we hit 0 immediately); (17a)
fM(M) = 0, (oops. . . we’ve hit M first). (17b)

Let’s rewrite (16) as

p fM(i− 1)− fM(i) + q fM(i+ 1) = 0. (18)

Take the case N = 2, in which case our tree has only two branches, so it looks like the
integer line Z, with the left branch giving negative numbers! Then p = q = 1/2, and (18)
becomes

fM(i− 1)− 2fM(i) + fM(i+ 1) = 0 (19)

after multiplying by 2. Anybody who’s ever done even a little numerics involving finite
differences will recognize (19) as the one-dimensional discretization of the Laplacian, with
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unit grid size! Functions whose Laplacian is zero are called harmonic. Thus, equation (18)
says that the function fM(i) is harmonic with respect to the graph Laplacian defined on
our tree. The equations (17) act as boundary conditions.

Let us solve the recurrence relation (18) with boundary conditions (17). Much as for
ODEs, this is often done by guessing the correct form. Put

fM(i) = λi (20)

and insert in (18) to obtain
p λi−1 − λi + q λi+1 = 0. (21)

Multiplying by λ1−i, we have
p− λ+ q λ2 = 0, (22)

which means (since p+ q = 1) that λ = 1 or λ = p/q. Thus, the general solution is

fM(i) = AM +BM (p/q)i. (23)

This holds for p 6= q, so not for N = 2. For N > 2 we have p < q.
We apply the boundary conditions (17) to fix the constants:

AM +BM = 1, AM +BM(p/q)M = 0, (24)

so that

AM = − (p/q)M

1− (p/q)M
, BM =

1

1− (p/q)M
. (25)

Finally, for p < q (N > 2) we take the limit of M going to infinity:

lim
M→∞

AM = 0, lim
M→∞

BM = 1. (26)

We are left with
f∞(i) = (p/q)i. (27)

A walk starting at 0 has f∞(i) = 1, since it is already at 0. It must jump to level 1, so the
probability of returning to zero once, starting from 0, is f∞(1) = (p/q) < 1.

What does this mean? It gets exponentially more difficult to return to 0 as the depth i
is increased. This is important for our entanglement picture: recall that 0 stands for the
‘disentangled’ state. It can be shown that the form (27) implies that the walk will almost
surely return to zero only a finite number of times. This is plausible: a walk starting at 0
has a fair chance (p/q) or returning to 0, but over time it becomes geometrically less and
less likely that it will do so over and over gain. Hence, the ultimate state is almost surely
escape to∞, or complete entanglement.
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Note that I am not claiming that the random walk on the tree we just described is an
accurate representation of the winding process in Fig. 5(a). There are many reasons for
this: for one, the process in Fig. 5(a) will likely lead to correlations between successive
steps in the tree. It will also have a variable time between steps whose distribution would
have to be taken into account. The branching process, as expressed by the tree structure,
is a cartoon that explains why spontaneous entangling is much easier than spontaneous
detangling, but the details should not be taken too seriously. For a more detailed treatment
see the book by Nechaev (1996).
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Side note: Lazy random walk
In the model presented earlier the walker must jump. But we can include a nonzero prob-
ability that the walker stay put. Such a walker is often called ‘lazy.’ (Lazy random walks
are used to destroy some parity properties: for instance, a random walk on the integers
always alternates between even and odd integers.)

10



If the walker is allowed to stay in place, then we must include this in the recurrence
relation (16):

fM(i) = pi,i−1 fM(i− 1) + pi,i+1 fM(i+ 1) + pi,i fM(i) (28)

or
p fM(i− 1)− (1− r)fM(i) + q fM(i+ 1) = 0 (29)

with p+ q + r = 1. The characteristic equation is now

p− (1− r)λ+ q λ2 = 0. (30)

but the two solutions are again λ = 1 and λ = p/q! This only depends on r through the
fact that p+ q + r = 1.
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