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hagfish factoids

• Not the prettiest fish.

• An ancient fish: no teeth.

• Only known living animal that
has a skull but not a vertebral
column.

• 77 species, average 50 cm.

• Eats worms as well as dead fish,
by burrowing into their carcass.
They can feed through their
own skin.
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sliming predators

play movie

[Zintzen, V., Roberts, C. D., Anderson, M. J., Stewart, A. L., Struthers, C. D., &

Harvey, E. S. (2011). Scientific Reports, 1, 131]
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http://www.math.wisc.edu/~jeanluc/movies/hagfish_sliming.mp4


knotting

youtube movie (see around 1 min mark)
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http://www.youtube.com/watch_popup?v=BcsG8DYWx5M&hd=1


slime in the lab: a promising material

youtube movie
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http://www.youtube.com/watch_popup?v=Bb2EOP3ohnE&hd=1


so what’s inside the slime?

• .002% thread skein

• .0015% mucin

• 99.996% seawater (!)

[Fudge, D. S., Levy, N., Chiu, S., & Gosline, J. M. (2005). J. Exp. Biol. 208, 4613–4625]
6 / 21



what’s a skein?

A skein consists of thread rolled
into a ball.

Skeins are about 0.1 mm in size.

Thread length: about 15 cm!

The packing fraction is close to 1.

[Fernholm, B. (1981). Acta Zool. 62 (3), 137–145]
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what happens when the skeins unravel?

The threads form a network, which
gives the slime its properties.

The thread network determines the
rheology of the slime.

[Fudge et al. (2005)]
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what happens when the skeins unravel?

Here the skein is stuck to a glass slide:

play movie [experiment by Randy Ewoldt]
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http://www.math.wisc.edu/~jeanluc/movies/HagfishSlimeWhole005-comp-Unraveling-Crop01.mp4


similar to experiments with tape

The dynamics at the peeling points can get very complicated and can even
lead to triboluminescence.

[Figures from Cortet, P.-P., Ciccotti, M., & Vanel, L. (2007). J. Stat. Mech. 2007,

P03005 and Camara, C. G., Escobar, J. V., Hird, J. R., & Putterman, S. J. (2008).

Nature, 455, 1089–1092; see also Maugis & Barquins (1988); De et al. (2004).]
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peeling tape: work-energy theorem

Work-energy theorem of Hong & Yue (1995):

U̇ = (T − F0(V ))V

• U̇ is the total change in the energy of the system;

• T is the force drawing out the thread;

• F0(V ) is a velocity-dependent peeling force.

Neglect changes to the elastic energy of the tape (U̇ = 0):

T = F0(V )
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peeling force

A simple model for the peeling force is

F0(V ) = αVm, 0 ≤ m ≤ 1

which we solve for the peeling velocity:

V = (T/α)1/m

The total length L(t) of thread drawn out thus satisfies

L̇ = (T/α)1/m
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mass conservation

Relate R, the skein radius, and L using mass conservation:

d

dt

(
4
3πηR

3 + πr2L
)

= 0 =⇒ L̇ = −4ηR2Ṙ/r2,

where r is the thread radius and η ≤ 1 is the packing fraction of thread
into the spherical skein.

Under constant tension T , we can easily solve for the depletion time

tdep =
4ηR3

0

3r2
(T/α)1/m

to run out of thread, given an initial skein radius R0.
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hydrodynamics

So far there is no fluid. Assume the skein is immersed a simple 1D flow

u(x , y , t) = u(x , t) x̂

at the origin. The thread remains straight and aligned with the horizontal.

Resistive force theory for a straight filament then says

8πµδ (xt − u) = 2Tsxs

2Tss = −8πµδxs · us

where x(s, t) is the Eulerian position of a thread segment as a function of
the Lagrangian label s (arc length).

[µ = viscosity, δ = slenderness parameter]
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unraveling the skein

initial thread unraveled thread

s = 0 s = L0 s = L skein

• The Lagrangian arc length parameter values s ∈ [0, L0] correspond to
the ‘initial’ piece of thread.

• The thread added by unraveling is s ∈ (L0, L(t)].

The tension at s = L(t) — the end unraveling from the skein — is equal
to the drag force on a sphere of radius R:

T = 6πµR xs · (u− xt), s = L(t).

The other end is free:
T = 0, s = 0.
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the unraveling rate equation

The Eulerian position of a thread element is

x = X (t)− L(t) + s

where X (t) is the position of the skein.

Hence, using the tension in our peeling law:

(L̇)m = 6πµRα−1(L̇− Ẋ + u(X , t))

This is not closed: we need to find a separate equation for Ẋ . We do this
by solving the equations of resistive force theory.
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the closed system

Skipping some algebraic details, we eventually obtain the system of
differential equations

(L̇)m = 6πµα−1R ū(X , L, t)

Ẋ = L̇ + u(X , t)− ū(X , L, t)

where

ū(X , L, t) =
1

L + (3R/2δ)

∫ X

X−L
{u(X , t)− u(x , t)} dx

Note that R and L are related by mass conservation.
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extensional flow

For an extensional flow
u(x , t) = λ(t)x

we can reduce the system to one ODE:

(L̇)m = 3πµα−1λRL2/(L + (3R/2δ))

where again R = R(L), and also δ = δ(L) (slenderness parameter).

[Recall: δ = −1/ log(ε2e) with ε = r/L the slenderness ratio.]

This nonlinear ODE cannot be solved analytically, except in some
asymptotic limits for special choices of m.

18 / 21



numerical solution
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Numerical solution for r = 1µm, R0 = 50µm, L0 = 2R0, µ = 1.5× 10−3 Pa s,

m = 1/3, α = 8× 10−4 N (m/s)−1/3, η = 1, λ = 1 s−1.
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numerical solution: discussion

• The depletion time is about 103 s.

• Problem: this is 3 orders of magnitude too long!

• Possible issues:
• No real idea what peeling force parameter values to use. (Here used

educated guess based on tape.) Changing these can radically alter the
results.

• Maybe adjust the drag force if the filament doesn’t remain straight: go
beyond resistive force to full slender-body theory.

• Are the mucins important? Experiments suggest so but their role is
unclear. They might catalyze the peeling somehow, or stick to the
filament and increase the drag force.

• Proper rheological experiments needed (Randy Ewoldt)!
• Use a more ‘mixing’ flow, closer to turbulence.

• Future research: network created by threads.
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