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Experiment of Boyland, Aref, & Stremler

[P. L. Boyland, H. Aref, and M. A. Stremler, J. Fluid Mech. 403, 277 (2000)]

[P. L. Boyland, M. A. Stremler, and H. Aref, Physica D 175, 69 (2003)]
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The Connection with Braiding
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Generators of the n-Braid GroupPSfrag replacements
σ−1

i

σi

i − 1 i + 1 i + 2iPSfrag replacements

σ−1

i

σi

i − 1 i + 1 i + 2i

A generator

σi , i = 1, . . . , n − 1

is the clockwise interchange of
the i th and (i + 1)th rod.
The generators obey the presen-
tation

σi+1 σi σi+1 = σi σi+1 σi

σiσj = σjσi, |i − j| > 1

These generators are used to characterise the motion of the rods.
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The Two BAS Stirring Protocols

σ1σ2 protocol

σ−1

1
σ2 protocol

[P. L. Boyland, H. Aref, and M. A. Stremler, J. Fluid Mech. 403, 277 (2000)]
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Topological Entropy of a Braid

Practically speaking, the topological entropy of a braid is a lower
bound on the line-stretching exponent of the flow!
This is reasonable:

I II

σ2
=⇒ II’

I’

In practice, we compute the topological entropy of a braid using a
train-track algorithm due to Bestvina & Handel. The end result is
a transition matrix showing the how each edge is mapped under
the action of the braid.

[M. Bestvina and M. Handel, Topology 34, 109 (1995)]
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The Difference between BAS’s Two Protocols

• The matrices associated the generators have eigenvalues on
the unit-circle (but their product doesn’t necessarily).

• The first (bad) stirring protocol has eigenvalues on the unit
circle

• The second (good) protocol has largest eigenvalue
(3 +

√
5)/2 = 2.6180.

• So for the second protocol the length of a line joining the
rods grows exponentially!

• That is, material lines have to stretch by at least a factor
of 2.6180 each time we execute the protocol σ−1

1
σ2.

• This is guaranteed to hold in some neighbourhood of the rods
(Thurston–Nielsen theorem).
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One Rod Mixer: The Kenwood Chef
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Poincaré Section
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Stretching of Lines
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Particle Orbits are Topological Obstacles

Choose any fluid particle orbit (green dot).

Material lines must bend around the orbit: it acts just like a “rod”!
[J-LT, Phys. Rev. Lett. 94, 084502 (2005)]

Today: focus on periodic orbits.

How do they braid around each other?
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Motion of Islands

Make a braid from the motion of
the rod and the periodic islands.
Most (74%) of the topological
entropy is accounted for by this
braid.
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Motion of Islands and Unstable Periodic Orbits

Now we also include unsta-
ble periods orbits as well as
the stable ones (islands).
Almost all (99%) of the topo-
logical entropy is accounted
for by this braid.

But are the periodic orbits re-
ally “ghost rods”?
That is, do material lines re-
ally get out of their way?
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Periodic Orbits as Ghost Rods

[movie: sf_periodic.avi]

Mixing with Ghost Rods – p.14/19

http://www.ma.ic.ac.uk/~jeanluc/movies/sf_periodic.avi


Blowup of the Tip
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So Which Orbits Make Good Rods?

A good ghost rod should “look” like a real rod: material lines
wrap around it.

Look at linearisation of the period-1 map:
Two eigenvalues Λ and Λ−1 (Floquet multipliers),
with |Λ| ≥ |Λ|−1.

Λ complex Elliptic Good rod (obvious).
|Λ| > 1 Hyperbolic Crap rod.
Λ = 1 Parabolic Good rod?

The parabolic points are the most interesting: they are associated
with the crucial property of folding.
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Normal Form near a Parabolic Point

X ′ = X + quadratic terms
Y ′ = Y + quadratic terms

or

X ′ = X + Y + X2

Y ′ = Y + X2

The first of these does not lead to folding.
The coefficient of X2 determines the “size” of the rod, which is a
function of time.
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Curvature of the Tip at the Periodic Orbit
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Conclusions

• Topological chaos involves moving obstacles in a 2D flow,
which create nontrivial braids.

• Periodic orbits make perfect obstacles (in periodic flows).
• This is a good way to “explain” the chaos in a flow —

accounts for stretching of material lines.
• Islands (elliptic orbits) look just like rods, and parabolic

orbits can look a lot like rods.
• No need for infinitesimal separation of trajectories or

derivatives of the velocity field — this is an inherently global
description.

• The size of the rods is important — for islands this is obvious
but for parabolic points the apparent size is a function of time.
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