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Experiment of Boyland et al.

[P. L. Boyland, H. Aref, and M. A. Stremler, J. Fluid Mech. 403,
277 (2000)] (movie by Matthew Finn)
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Four Basic Operations

o1 and o9 are referred to as the generators of the 3-braid group.
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Two Stirring Protocols

(h) E (c) ; ld) ;

o1 ' o9 protocol

o109 protocol
(a)

(@) (d)

(Ve

[P. L. Boyland, H. Aref, and M. A. Stremler, J. Fluid Mech. 403, 277 (2000)]
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Braiding

o109 protocol oy ' o9 protocol

(a)

Time

diD dib

[P. L. Boyland, H. Aref, and M. A. Stremler, J. Fluid Mech. 403, 277 (2000)]

Knitting and Mixing — p.5/20



Matrix Representation of o

oo o 0/ch

Let | and Il denote the lengths of the two segments. After a o-
operation, we have

()= (3)= 6 ) ) =)

Hence, the matrix representation for o5 IS

11
09 = .
>~ \o 1
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Matrix Representation of o’

oo o 0/|:\0

Similarly, after a o; ' operation we have

() =)= () )=o)

Hence, the matrix representation for o; ! is

1 0
1
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Matrix Representation of the Braid Group

We now invoke the faithfulness of the representation to complete

the set,
1 0 1 1
o] = ; o9 = :
1 11 ) 2 0 1 9
1 0 1 —1
—1 _ , -1 _

Our two protocols have representation

11 . 11
0109 = : o 09 = .
172711 0 172711 9
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T he Difference between the Protocols

e Each matrix in the group has unit eigenvalues.
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T he Difference between the Protocols

e Each matrix in the group has unit eigenvalues.
* The first stirring protocol has eigenvalues on the unit circle
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T he Difference between the Protocols

e Each matrix in the group has unit eigenvalues.
* The first stirring protocol has eigenvalues on the unit circle

* The second has eigenvalues (3 £+ v/5)/2 = 2.6180 for the
larger eigenvalue.
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T he Difference between the Protocols

Each matrix in the group has unit eigenvalues.
The first stirring protocol has eigenvalues on the unit circle

The second has eigenvalues (3 & 1/5)/2 = 2.6180 for the
larger eigenvalue.

So for the second protocol the length of the lines | and 11
grows exponentially!
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T he Difference between the Protocols

Each matrix in the

group has unit eigenvalues.

The first stirring protocol has eigenvalues on the unit circle
The second has eigenvalues (3 & 1/5) /2 = 2.6180 for the

larger eigenvalue.

So for the second protocol the length of the lines | and 11

grows exponential

y!

The larger eigenva

ue is a lower bound on the growth factor

of the length of material lines.
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T he Difference between the Protocols

Each matrix in the group has unit eigenvalues.
The first stirring protocol has eigenvalues on the unit circle

The second has eigenvalues (3 & 1/5)/2 = 2.6180 for the
larger eigenvalue.

So for the second protocol the length of the lines | and 11
grows exponentially!

The larger eigenvalue is a lower bound on the growth factor
of the length of material lines.

That Is, material lines have to stretch by at least a factor
of 2.6180 each time we execute the protocol o; 0.
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T he Difference between the Protocols

Each matrix in the group has unit eigenvalues.
The first stirring protocol has eigenvalues on the unit circle

The second has eigenvalues (3 & 1/5)/2 = 2.6180 for the
larger eigenvalue.

So for the second protocol the length of the lines | and 11
grows exponentially!

The larger eigenvalue is a lower bound on the growth factor
of the length of material lines.

That Is, material lines have to stretch by at least a factor
of 2.6180 each time we execute the protocol o; 0.

This Is guaranteed to hold in some neighbourhood of the rods
(Thurston—Nielsen theorem).
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Freely-moving Rods in a Cavity Flow

[A. Vikhansky, Physics of Fluids 15, 1830 (2003)]
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Particle Orbitsare Topological Obstacles

Choose any fluid particle orbit ( ).

///

Material lines must
The idea: pick any t

nree fluid particles and follow them.

How O

o they braid around each other?

pend around the orbit: it acts just like a “rod”!
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Detecting Braiding Events

In the second case there is no net braid: the two elements cancel
each other.
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Random Sequence of Braids

We end up with a sequence of braids, with matrix representation
Y(N) — V) 5(2) ()

where o) € {51, 09,071,051} and N is the number of braiding
events detected after a time ¢.
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Random Sequence of Braids

We end up with a sequence of braids, with matrix representation

(V) _ (V) (2) (1)

where o) € {01, 09,071,051} and N is the number of braiding
events detected after a time ¢.

Random matrix theory says that one eigenvalue of V) can grow
exponentially! We call the rate of exponential growth the braiding
Lyapunov exponent or just braiding exponent.

The exponent is a measure of the complexity of the braiding
motion.
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Non-braiding Motion

First consider the motion of of three points in concentric circles
with irrational frequencies.
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The eigenvalue grows linearly, which means that the braiding
exponent Is zero. Notice that the eigenvalue often returns to unity:.
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Blinking-vortex Flow

To demonstrate good braiding, we need a chaotic flow on a
bounded domain (a spatially-periodic flow won’t do).

Aref’s blinking-vortex flow is ideal.

First half of period Second half of period

The only parameter is the circulation I" of the vortices.
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Blinking Vortex: Non-braiding Motion

For I' = 0.5, the blinking vortex has only small chaotic regions.
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One of the orbits i1s chaotic, the other two are closed.
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Blinking Vortex: Braiding Motion

For I' = 13, the blinking vortex is globally chaotic.
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The braiding factor now grows exponentially. In the same time

interval as for I = 0.5, the final value is now of order 102" rather
than 80!
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Averaging over many Triplets
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Averaged over 100 random triplets.
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Comparison with Lyapunov Exponents

Lyapunov exponent
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[" varies from 8 to 20.
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Conclusions

Topological chaos involves moving obstacles in a 2D flow,
which create nontrivial braids.

The complexity of a braid can be represented by the largest
eigenvalue of a product of matrices.

Any triplet of particles can potentially braid.
The complexity of the braid is a good measure of chaos.

No need for infinitesimal separation of trajectories or
derivatives of the velocity field.

For instance, can use all the floats in a data set (J. La Casce).
Test In 2D turbulent simulations (F. Paparella).
Higher-order braids!
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