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Setup

The equation we are interested in is the much-discussed

advection-diffusion equation:

∂φ

∂t
+ v · ∇φ =

1

ρ
∇ · (ρ D∇φ)

where the Eulerian velocity field v(x, t) is some prescribed

time-dependent flow, which may or may not be be chaotic. The

quantity φ represents the concentration of some passive scalar, ρ is

the density, and D is the diffusion coefficient.

We assume that the Lagrangian dynamics are chaotic.
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Stirring and Mixing!

As we were told earlier this summer, the stretching due to positive

Lyapunov exponents is known as stirring. The stirring phase

creates large gradients, allowing diffusion to take over in the phase

known to the cognoscenti as mixing.

Lyapunov exponents are defined in the limit t → ∞, and converge

very slowly.

But mixing happens in finite time. So what really matters are the

finite-time Lyapunov exponents, which depend on position and

time.
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The Goal

We try and find some generic constraints on the spatiotemporal

dependence of FT Lyapunov exponents, and see how these could

affect stirring and mixing.

We shall bring the fancy tools of differential geometry to bear on

this problem.

Results: a generic functional form for the time evolution of

finite-time Lyapunov exponents, and a relation between their

spatial dependence and the shape of the stable manifolds.
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Time Scales

There are at least two relevant times in the system:

• The diffusion time, τD ≡ L2/D.

• The Lyapunov time, τλ ≡ 1/λ.

L is some characteristic length scale.

Their ratio is a dimensionless parameter,

Ω ≡ τD/τλ = λL2/D

We consider the typical stirring-dominated case, Ω � 1.
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Lagrangian Coordinates

The trajectory of a fluid element in Eulerian coordinates x satisfies

dx

dt
(ξ, t) = v(x(ξ, t), t),

where ξ are Lagrangian coordinates which label fluid elements. The

usual choice is to take as initial condition x(ξ, t = 0) = ξ, which

says that fluid elements are labeled by their initial position.

x = x(ξ, t) is thus the transformation from Lagrangian (ξ) to

Eulerian (x) coordinates.

This transformation gets horrendously complicated as time evolves.
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Jacobian

The Jacobian of this transformation is

J i
j ≡ ∂xi

∂ξj

The Jacobian tells us how tensors transform:

• Covariant:

Ṽj = Jk
j Vk,

• Contravariant:

W̃ i = J i
k W k.
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Measuring distances

The distance between two infinitesimally separated points in

Eulerian space is given by

ds2 = dx · dx = δij dxidxj .

We assume repeated indices are summed.

(If our Eulerian description was in terms of non-cartesian coordinates, or

lived on a curved manifold, like the surface of the earth, then another

tensor than δij would enter.)

Therefore, in Lagrangian coordinates distances are given by

ds2 = δij

(

dxi

dξk
dξk

) (

dxj

dξ`
dξ`

)

= (J i
k δij Jj

`) dξkdξ` .
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The Metric Tensor

The tensor δij is a metric in the Eulerian (Euclidean) space. The

tensor

gk`(ξ, t) ≡
∑

i

J i
k J i

` =
(

JT J
)

k`

is the same metric tensor but in the Lagrangian coordinate system.

Since the metric tells us about the distance between two

neighbouring Lagrangian trajectories, its eigenvalues are related to

the finite-time Lyapunov exponents.
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2-D Incompressible Flow

We will now restrict ourselves to a 2-D, incompressible velocity

field v. This means that

det g = (det J)2 = 1.

Now, g is a positive-definite symmetric matrix, which implies that

it has real positive eigenvalues, Λ(ξ, t) ≥ 1 and Λ−1(ξ, t) ≤ 1, and

orthonormal eigenvectors ê(ξ, t) and ŝ(ξ, t):

gk`(ξ, t) = Λ ek e` + Λ−1 sk s`

The finite-time Lyapunov exponents are given by

λ(ξ, t) = ln Λ(ξ, t)/2 t
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Stable and Unstable Directions

At a fixed coordinate ξ:

� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �s
e e

s

The stable and unstable manifolds ê(ξ, t) and ŝ(ξ, t) converge

exponentially to their asymptotic values ê∞(ξ) and ŝ∞(ξ), whereas

Lyapunov exponents converge logarithmically.
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The Advection-diffusion Equation

Under the coordinate change to Lagrangian variables the diffusion

term becomes

∇ · (D∇φ) =
∂

∂xi
(Dδij ∂φ

∂xj
) =

∂

∂ξi
(Dgij ∂φ

∂ξj
).

In Lagrangian coordinates the diffusivity becomes Dgij : it is no

longer isotropic.

The advection-diffusion equation is thus just the diffusion equation,

∂φ

∂t
=

∂

∂ξi
(Dgij ∂φ

∂ξj
),

because the advection term drops out by construction.
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Diffusion along ŝ∞ and ê∞

The diffusion coefficients along the ŝ∞ and ê∞ lines are

Dss = s∞i(Dgij)s∞j = D exp(2λ t),

Dee = e∞i(Dgij)e∞j = D exp(−2λ t).

We see that Dee goes to zero exponentially quickly. Hence,

essentially all the diffusion occurs along the ŝ∞ line.
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Riemann Curvature Tensor

Are there constraints to the form the metric can take?

The Riemann curvature tensor is defined as

Rαβµν ≡ 1

2

(

∂2gαν

∂xβ∂xµ
+

∂2gβµ

∂xα∂xν
− ∂2gβν

∂xα∂xµ
− ∂2gαµ

∂xβ∂xν

)

+ gρσ

(

Γρ
ανΓσ

βµ − Γρ
αµΓσ

βν

)

,

where the Christoffel symbols are

Γρ
µν ≡ 1

2
gρτ

(

∂gµτ

∂xν
+

∂gντ

∂xµ
− ∂gµν

∂xτ

)

.

The Riemann tensor and the Christoffel symbols satisfy a bunch of

symmetries. In two dimensions there is only one independent

component of R, which we take to be R1212.
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Who Cares?

What is the meaning of this tensor? For some vector V (x),

Vµ;ν;κ − Vµ;κ;ν = Vσ gσρRρµνκ

The semicolon indicates covariant differentiation, which is simply a

derivative which takes into account the fact that basis vectors may

depend on position.

In flat space, derivatives commute, so the Riemann tensor must

vanish identically. It must do so in all coordinate systems—in

particular in Lagrangian coordinates.
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Work out the beast. . .

After a tedious calculation, we find the Riemann tensor is

R1212 = −A exp(2λ t) + B exp(−2λ t)

where

A ≡ 2(̂s · ∇0λ t)2 + ŝ · ∇0(̂s · ∇0λ t) + 3(∇0 · ŝ)(̂s · ∇0λ t)

+ ŝ · ∇0(∇0 · ŝ) + (∇0 · ŝ)2

and B is a similar expression involving ê.

(The ∇0 are gradients with respect to Lagrangian coordinates.)
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We require that R1212 vanishes identically:

R1212 = 0 =⇒ A

B
= exp(−4λ t).

We now take t large enough for the ŝ direction to converge to its

asymptotic value, ŝ∞. For such large time (which is not that large

if the flow is reasonably chaotic), we must have A → 0, i.e.,

ŝ∞ · ∇0Υ + Υ(2Υ −∇0 · ŝ∞) = 0 ,

where

ŝ∞ · ∇0λ̃(ξ) ≡ lim
t→∞

ŝ · ∇0λ(ξ, t) t

and

Υ ≡ ŝ∞ · ∇0λ̃(ξ) + ∇0 · ŝ∞ .
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The definition of λ̃ allows addition of an arbitrary function f(ξ, t)

satisfying

ŝ∞ · ∇0f(ξ, t) = 0,

so that

λ(ξ, t) =
λ̃(ξ)

t
+

f(ξ, t)√
t

+ λ∞,

where f(ξ, t) is bounded by
√

t, i.e.

lim
t→∞

f(ξ, t)√
t

= 0.

The reason we write the arbitrary term with a 1/
√

t factor will

become clear in a minute.
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Evolution of the Distribution

Antonsen et al have shown that the time evolution of the

probability distribution function of finite-time Lyapunov exponents

is given by

P (λ, t) =

√

t G′′(λ)

2π
exp(−t G(λ)),

where G(λ∞) = G′(λ∞) = 0. This is the probability distribution

for a random variable that is the average of many independent,

identically distributed variables.

The width of the distribution sharpens as time evolves, and

becomes a delta function as t → ∞, peaked at λ∞.
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If the range of λ of interest is small compared to the standard

deviation, we can approximate G by expanding around λ∞,

G(λ) ' 1

2
G′′(λ∞)(λ − λ∞)2.

so that the probability distribution becomes Gaussian:

P (λ, t) =

√

t G′′(λ∞)

2π
exp

(

−1

2
t G′′(λ∞)(λ − λ∞)2

)

,

Note the the standard deviation is σ = 1/
√

G′′(λ∞) t .

(The Gaussian approximation works best for strongly chaotic

flows.)
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If we take the spatial average 〈·〉 of our expression for the

finite-time Lyapunov exponents,

〈λ〉 (t) =
〈λ̃〉
t

+
〈f(ξ, t)〉√

t
+ λ∞,

we find that the dominant contribution to the standard deviation

for large t is

σ =

√

〈λ2〉 − 〈λ〉2

〈λ〉 ∼

√

〈f(ξ, t)2〉 − 〈f(ξ, t)〉2

λ∞

√
t

.

To agree with the Gaussian result of σ ∼ 1/
√

t, we require

lim
t→∞

〈f(ξ, t)〉 = f0, lim
t→∞

〈

f(ξ, t)2
〉

= f2
1 ,

i.e., the first two moments of f become independent of time for

large t.
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Example:

Dotted: Numerical

Solid: 0.305/t + 0.175/
√

t + 0.117

Allows us to determine λ∞ = 0.117 rapidly and accurately.
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Relationship between λ̃ and the ŝ line

The curvature vector is defined as

κ ≡ ŝ∞ · ∇0ŝ∞

It can be shown that the condition that was derived earlier from

the vanishing of the Riemann tensor implies

ŝ∞ ·
(

∇0(λ̃ − ln ‖κ‖) + κ ×∇0 × κ/ ‖κ‖2
)

= 0

if the curvature is nonvanishing.
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Tang and Boozer have demonstrated that the relationship between

the ŝ line and λ can be expressed as

λ(ξ, t) = −c0

t
ln

∥

∥

∥
1 +

κ

κ̄

∥

∥

∥
+ λ̃0(ξ)/t + f(ξ)/

√
t + λ∞

where κ̄ is the average curvature along the ŝ line, and λ̃0 is slowly

varying along the ŝ line. This is well confirmed numerically.

Note that the change in λ during sharp bends of the ŝ line becomes

less pronounced as time evolves and the finite-time Lyapunov

exponents converge to their uniform, infinite-time value.
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Figure 3-5, 3-6, 3-11, 3-10
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Conclusions

• Diffusion occurs overwhelmingly along the stable direction.

Differential geometry gives an elegant description.

• The spatial dependence of Lyapunov exponents along ŝ lines is

contained in the function λ̃(ξ), which decays as 1/t.

• The notoriously slow convergence of Lyapunov exponents is

embodied in the function f(ξ, t), which is constant on ŝ lines

and decays as 1/
√

t.

• The new metric tensor obtained after transforming to

Lagrangian coordinates has to have a vanishing Riemann

tensor, which gives a relation between ŝ∞(ξ) and λ̃(ξ).

• Sharp bends in the ŝ line lead to locally small finite-time

Lyapunov exponents. These are “sticky” regions where

gradients don’t build up as quickly, so diffusion is hindered.


