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Complex entanglements are
everywhere



Tangled hair

[Goldstein, R. E., Warren, P. B., & Ball, R. C. (2012). Phys. Rev. Lett. 108, 078101]
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Tangled hagfish slime

Slime secreted by hagfish is
made of microfibers.

The quality of entanglement
determines the material
properties (rheology) of the
slime.

[Fudge, D. S., Levy, N., Chiu, S., & Gosline, J. M. (2005). J. Exp. Biol. 208, 4613–4625]

[Chaudhary, G., Ewoldt, R., & Thiffeault, J.-L. (2019). J. Roy. Soc. Interface, 16 (150),

20180710] 4 / 31



Tangled carbon nanotubes

[Source: http://www.ineffableisland.com/2010/04/

carbon-nanotubes-used-to-make-smaller.html]
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Tangled magnetic fields

[Source: http://www.maths.dundee.ac.uk/mhd/]
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Tangled oceanic float trajectories
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[Source: WOCE subsurface float data assembly center, http://wfdac.whoi.edu,

Thiffeault, J.-L. (2010). Chaos, 20, 017516]
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The simplest tangling problem

Consider two Brownian motions on the complex plane, each with diffusion
constant D:

Viewed as a spacetime plot, these form a ‘braid’ of two strands.
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Winding angle

Take the vector Z(t) = Z1(t)− Z2(t), which behaves like a Brownian
particle of diffusivity 2D (→ D):

Define Θ ∈ (−∞,∞) to be the total winding angle of Z(t) around the
origin.
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Winding angle distribution

Spitzer (1958) found the time-asymptotic distribution of θ to be Cauchy:

Θ(t)

log(2
√
Dt/r0)

d−−→ X, pX(x) =
1

π

1

1 + x2
.

where r0 = |Z(0)|.

The normalized variable is X ∼ Θ(t)/ log t.

Note that a Cauchy distribution is a bit strange: the variance is infinite, so
large windings are highly probable!

[Spitzer, F. (1958). Trans. Amer. Math. Soc. 87, 187–197]
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Winding angle distribution: numerics
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The normalized variable is x = θ/ log(2
√
Dt/r0).

Some care is needed for these simulations (rescale time near the origin)
[Wen, H. & Thiffeault, J.-L. (2019). Philos. Trans. Royal Soc. A, 377, 20180347]
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Winding angle distribution: derivation

The probability distribution P (z, t) of the Brownian process satisfies the
Fokker–Planck PDE (heat equation):

∂P

∂t
= D∆P, P (z, 0) = δ(z − z0).

Consider the solution in a wedge of half-angle α:

(Reflecting boundary condition at the walls.)
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Winding angle distribution: derivation (cont’d)

In polar form, Fokker–Planck PDE for P (r, θ, t):

∂P

∂t
= D

(
1

r

∂

∂r

(
r
∂P

∂r

)
+

1

r2
∂2P

∂θ2

)
, ∂θP (r,±α, t) = 0.

The solution is a standard eigenfunction expansion, but then take the
wedge angle α to ∞ (!):

P (z, t) =
1

2πDt
e−(r

2+r20)/4Dt

∫ ∞
0

cos ν(θ − θ0) Iν
( r r0

2Dt

)
dν

where Iν is a modified Bessel function of the first kind.

For large t this recovers the Cauchy distribution for the angle.

Key point: by allowing the wedge angle to infinity, we are using Riemann
sheets to keep track of the winding angle.
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Winding around a finite obstable

So Cauchy distribution is a bit pathological: infinite variance. This is a
symptom of the point approximation for the winding center.

Instead of winding around a point, wind around a disk of radius a.

The calculation is quite similar, but now we get convergence to a very
different distribution:

Θ(t)

log(2
√
Dt/a)

d−−→ X, pX(x) = 1
2 sech(πx/2).

This has exponential tails: all the moments exist.

[Bélisle, C. (1989). Ann. Prob. 17 (4), 1377–1402

Grosberg, A. & Frisch, H. (2003). J. Phys. A, 36 (34), 8955–8981

Wen, H. & Thiffeault, J.-L. (2019). Philos. Trans. Royal Soc. A, 377, 20180347]
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Finite obstacle: numerics
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The normalized variable is x = θ/log(2
√
Dt/a).

[Wen, H. & Thiffeault, J.-L. (2019). Philos. Trans. Royal Soc. A, 377, 20180347]
15 / 31



Let’s add drift!

So far the planar motion was pure Brownian motion. One natural
extension is to add a tangential drift, which leads to the PDE

∂p

∂t
+ Ω(r, t)

∂p

∂θ
= D∆p.

In general, we cannot solve this equation analytically or even
asymptotically in time.

Constant Ω is uninteresting: it simply “shifts” the pdf in time by Ωt.

Fortunately, a tractable case is the point vortex of fluid dynamics:

Ω(r) = β/r2.

The flow promotes winding, but falls off if the particle wanders too far.

16 / 31



Why does it work?

The reason why the point vortex allows analytical treatment is that the
eigenvalue problem arising from the boundary value problem is

ρ′′ +
1

r
ρ′ +

(
λ2 −

k2µ
r2

)
ρ = 0, kµ =

√
µ2 + iβµ

which is still a Bessel equation, though the drift makes the parameter kµ
complex. The asymptotic analysis is thus considerably more challenging.

I spare you the details, which are in
[Wen, H. & Thiffeault, J.-L. (2019). Philos. Trans. Royal Soc. A, 377, 20180347].

Let’s examine the limiting distributions in a few cases.
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Winding with drift: The three cases

Point, disk, and annulus:

Notice that the particle now winds preferentially counterclockwise, because
of the drift Ω = β/r2, β > 0.
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Winding with drift around a point
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X−1 converges to a Gamma(12 ,
1
2) distribution:

8Θ(t)

β log2
(
4t/r20

) d−−→ X, pX(x) =
1√
2π

x−3/2 e−1/2x χ(x>0) .

χ is the indicator function: angle is non-negative.
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Winding with drift around a disk of radius a
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Now the asymptotic distribution involves a second elliptic theta function:

4Θ(t)

β log2(4t/a2)

d−−→ X, pX(x) = −π
2 ϑ
′
2

(
π
2 , e−π

2x
)
χ(x>0) .

Angle is again non-negative.
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Winding with drift around an annulus a < r < b
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The bounded region is strongly recurrent and leads to a Gaussian form:

Θ(t)−A(t)β√
2A(t)

d−−→ N(0, 1), A(t) =
2t

b2 − a2
log(b/a).

Now the mean angle increases linearly with time.

The Gaussian form is generic in bounded regions [Geng, X. & Iyer, G. (2018)]
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Related example: Brownian motion on the torus

A Brownian motion on a torus can wind around the two periodic directions:

What is the asymptotic distribution of windings?

Mathematically, we are asking what is the homology class of the motion?

22 / 31



Torus: universal cover

We pass to the universal cover of the torus, which is the plane:

The universal cover records the windings as
paths on the plane. The original ‘copy’ is
called the fundamental domain.

On the plane the probability distribution is
the usual Gaussian heat kernel:

P (x, y, t) =
1

4πDt
e−(x

2+y2)/4Dt

So here m = bxc and n = byc will give the homology class: the number of
windings of the walk in each direction.

We can think of the motion as entangling with the space itself.
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The N -slit problem (w. G. Bonner and B. Valko)

Brownian motion in a square with N = 3 narrow “slits” of width ε:

L

L
ε 

- 0 +

ε ε 

Similar to a particle winding around two
obstacles.

Problem is now non-Abelian: order matters.
π1(DN ) instead of homology.

Angle is no longer as relevant as a measure
of entanglement.

Narrow slit approximation is crucial: the
particle hits a slit uniformly, with expected
time ∼ (L2/D) log ε−1 between hits.
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Groupoid description

Write the history of the Brownian motion as a sequence of symbols.

- 0 +
A0-

(A-0)*

B0+

(B+0)*

C-+

(C+-)*

These are groupoid elements: not all
mutliplications make sense.

A0−C−+(B+0)
∗(A0−)∗ . . .

The ∗ denotes the lower-half plane.

Whenever the particle returns to slit 0 we
have an element of π1(DN ).

The difficulty lies in keeping track of cancellations.

Each return corresponds to one or two letters: C−+ = A−0B0+.
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An explicit formula for the growth

The key quantity is the growth of reduced word length in the letters.
Related to growth in regular languages.

Key is derive a certain generating function for last passage times for N
slits:

R(λ) =
1

2(N − 2)λ

(
2(N − 1)2(N − 2)− (N − 1)λ−

√
D(N,λ)

)
with

D(N,λ) = (N − 1)
(
(N − 1)(λ− 2N(N − 3)− 4)2 − 4(N − 2)2λ2

)
The growth is then R(1)/R′(1).

[Gajrat, A., Malyshev, V. A., & Menshikov, M. V. (1993). Research Report RR-2202
INRIA

Gilch, L. A. (2008). In: Proceedings to 5th Colloquium on Mathematics and Computer

Science pp. 2544–2560,]
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Some references

Many people have worked on aspects of this problem:

• [Spitzer (1958); Durrett (1982); Messulam & Yor (1982); Berger (1987); Shi

(1998)] winding of Brownian motion around a point in R2.

• [Berger & Roberts (1988); Bélisle (1989); Bélisle & Faraway (1991); Rudnick &

Hu (1987)] winding of random walk around a point.

• [Drossel & Kardar (1996); Grosberg & Frisch (2003)] finite obstacle, closed
domain.

• [Itô & McKean (1974); McKean (1969); Lyons & McKean (1984)]

doubly-punctured plane.

• [McKean & Sullivan (1984)] three-punctured sphere.

• [Pitman & Yor (1986, 1989)] more points.

• [Watanabe (2000)] Riemann surfaces.

• [Nechaev (1988)] lattice of obstacles.

• [Nechaev (1996); Revuz & Yor (1999)] comprehensive books.
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Conclusions & outlook

• Entanglement at confluence of dynamics, probability, topology, and
combinatorics.

• Instead of Brownian motion, can use orbits from a dynamical system.
This yields dynamical information.

• More generally, study random processes on configuration spaces of
sets of points (also finite size objects).

• Other applications: Crowd dynamics (Ali, 2013), granular media
(Puckett et al., 2012).

• With Michael Allshouse: develop tools for analyzing orbit data from
this topological viewpoint (Allshouse & Thiffeault, 2012).

• With Tom Peacock, Marko Budǐsić, and Margaux Filippi: apply to
orbits in a fluid dynamics experiments.
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