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Drag Reduction

Experimental facts:

• Toms (1948) observed that the addition of ∼ 10 ppm
polymers to turbulent pipe flow reduced the pressure drop
substantially.

• Typical example: polyethilene oxide in water: 18 ppm (by
weight) reduces drag by 33%!!

• Qualitative understanding: classic review of Lumley (1969)
uses dimensional analysis (polymer size, viscosity, etc.) to
predict magnitude and onset of effect.

• Molecular scales matter! Mystery?
• Stretched state: Einstein’s effective viscosity [Hinch (1977)].
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Polymers

Polymers are long chains of molecules. Random walk at rest.
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Relaxation of Polymers

Pretty close to exponential. . .

From Perkins et al., Nature (1994)
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Constitutive Models

Model polymers in dilute solution as a continuum:
Stress on the fluid.

How does the stress tensor T depend on the state of the fluid?

• Elastic:

Tij = η γij , γ ≡ strain (deformation) tensor.

• Viscous or Newtonian:

Tij = µ γ̇ij , γ̇ ≡ ∇u + (∇u)T

• Viscoelastic:

Tij =

∫ t

−∞

G(t − t′) γ̇ij(t
′) dt′

Tugging at Polymers in Turbulent Flow – p.5/20



Maxwell Model

Exponentially-decaying memory:

Tij = (µ/τ)

∫ t

−∞

e−(t−t′)/τ γ̇ij(t
′) dt′

Reformulate as differential equation for T:

τ Ṫij = µ γ̇ij − Tij

Problem: not frame-indifferent!
Not good as a fluid relation. Remedied by introducing a
frame-independent (Oldroyd) derivative

Ṫ =⇒ DT ≡
∂T

∂t
+ u · ∇T − (T · ∇u + (∇u)T · T)
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The Equations of Motion

Couple stress to Navier–Stokes for an incompressible fluid:

∂u

∂t
+ u · ∇u + ∇p = ν∇2

u +
s

τ
∇ · A ;

DA = −
2

τ

(

A − ρ2
0 I

)

; ∇ · u = 0,

where A is equal to T up to constants, and can be regarded as the
local deformation of the polymers, with A = ρ2

0 I at rest.

Can be derived from a kinetic model of “Hookean dumbbells.”

More generally: allow nonlinear saturation of the length of
polymers (FENE-type models)

DA = −
1

τ

(

f(A) A − ρ2
0 I

)

.
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Evolution of the Principal Axes

The polymer conformation tensor A can be diagonalized, with
orthonormal eigenvectors eα and eigenvalues (ρα)2 that evolve
according to

dρα

dt
= λα ρα −

1

τ

(

f(‖ρ‖2)ρα − ρ2
0/ρα

)

,

λα(t, x) ≡ eα · ∇u · eα , d/dt = ∂/∂t + u · ∇ .

The ρα are the lengths of the principal axes of the ellipsoid
delineating the deformation of the polymer.
If the flow is smooth, the polymers tend to align with the
dominant stretching direction, so we consider only the major axis:

dρ

dt
= λ ρ −

1

τ

(

f(ρ2)ρ − ρ2
0/ρ

)
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Turbulence! (well. . . sort of)

For turbulence, a locally smooth regime is achieved when the
viscous scale is much longer that the polymer length.

In that case, model the velocity field as a Gaussian random
variable representing a smooth straining field λ(t) that changes
rapidly; λ satisfies

〈λ(t)λ(t′)〉 − λ̄2 = δ(t − t′) ∆ ; 〈λ(t)〉 = λ̄ ,

where the angle brackets denote an average over λ.

The variable λ(t) is δ-correlated in time, which means that it
forgets about its previous state immediately. It has mean λ̄ and
standard deviation ∆.

This “slightly” artificial situation has great analytical advantages.
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Fokker–Planck Equation

Because the distribution of λ(t) is Gaussian and δ-correlated, can
obtain a Fokker–Planck equation for the distribution P(t, ρ) of the
major axis:

Z(t; µ) = 〈exp (i µ ρ)〉

We can then derive an equation of motion for Z and average.
Gaussian integration by parts allows evaluation of terms of the
form 〈λZ〉.

Inverse Fourier transformation of Z with respect to µ then gives
the equation of motion for P(t, ρ), the PDF of ρ, (Chertkov, 2000)

∂tP = 1
2∆ ∂ρρ ∂ρρP − λ̄ ∂ρ ρP +

1

τ
∂ρ

(

f(ρ2)ρ − ρ2
0/ρ

)

P
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Stationary Distribution: Coiled State

Natural thing to do is to look for stationary solutions of the F–P
equation. Assume first that the polymers are uncoiled. Neglect
nonlinear relaxation: f = 1 (Hookean springs).

Pc(ρ) ∼ ρ−1−2(ξ−ζ) exp(−ξ ρ2
0/ρ

2)

where ρ is normalized by ρ0, and

ξ ≡ 1/∆τ , ζ ≡ λ̄/∆

are dimensionless numbers.

ζ/ξ = De, the Deborah number, the ratio of the polymer
relaxation timescale, τ , over the advection timescale, 1/λ̄.

Large De =⇒ polymers more affected.
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Moments of the Distribution

Below the coil-stretch transition at De = 1 (with λ̄/∆ = 1).
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Stationary Distribution: Stretched State

Assuming a FENE-type (Finite Extension Nonlinear Elastic)
model which limits the length of the polymers to ρm,

f(ρ2) =
ρ2
m − ρ2

0

ρ2
m − ρ2

.

Can find equilibrium distribution

Ps(ρ) ∼ ρ−1+2(λ̄/∆−ξ)(1 − ρ2)ξ

where ρ is normalized by ρm, and ξ ≡ 1/τ∆.

=⇒ Cutoff in PDF for ρ > ρm.
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Moments of the Distribution

Coil-stretch transition at De = 1 (with λ̄/∆ = 1).
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Negative moments
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Breaking Point

The PDF of length can also be used to estimate the fraction of
polymers that break.

Assume a polymer breaks if the tension F (ρ2) = f(ρ2)ρ/τ
exceeds a critical value, Fc.

To that critical tension corresponds a critical length, ρc, obtained
by solving

Fc =
1

τ
f(ρ2

c)ρc =
1

τ

ρ2
m

ρ2
m − ρ2

c
ρc,

=⇒ ρc =
ρ2
m

2τFc

(

√

1 + (2τFc/ρm)2 − 1

)

.
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The Survivors

The fraction of polymers that survive is equal to the fraction
shorter than ρc, obtained by integrating the PDF from 0 to ρc,

Prob(ρ < ρc) =
B(ρ2

c/ρ
2
m ; ζ − ξ , ξ + 1)

B(ζ − ξ , ξ + 1)
,

where
B(a, b) ≡ Γ(a)Γ(b)/Γ(a + b)

is the beta function, and B(z; a, b) is the incomplete beta function.

Since B(1; a, b) = B(a, b), for ρc = ρm none of the polymers
break.
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Surviving Fraction as a function of De−1

For different values of ζ ≡ λ̄/∆ with ρc/ρm = 0.7.
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The Survivors: Strong Turbulence

For large Deborah number,

Prob(ρ < ρc) ' (ρc/ρm)2 ζ ,

which is not small if ζ is not too large.

=⇒ Some polymers survive breakage for large λ̄ τ if the
fluctuations in λ̄ (given by ∆) are also large.

Of course, this treatment is for one correlation time of the
turbulence. In reality a given polymer is exposed to many
different random strains.

Survival prob. decays roughly as (ρc/ρm)2ζN , where N = t/tcorr

with tcorr the correlation time.
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Ongoing Research

• Model polymer as flexible chains instead of rods.
• Self-consistency: backreaction of the polymers on the fluid.
• Incorporate Einstein model of effective viscosity.
• Non-Gaussian statistics: Path integral formalism.
• Compressibility.
• Magnetic dynamo.
• Statistics of curvature.
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