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Motivation

Lie–Poisson brackets are a type of noncanonical
bracket and are ubiquitous in the reduction of
canonical Hamiltonian systems with symmetry. Finite-
dimensional examples include the heavy top and the
moment reduction of the Kida vortex, while for
infinite dimension we have the 2-D ideal fluid, reduced
MHD, and the 1-D Vlasov equation. Our goal is to
examine first a specific origin of Lie–Poisson brackets as
coming from reductions, and to interpret the invariants
obtained. This is to motivate the introduction of such
brackets.

Having done that we turn to building Lie–Poisson
brackets directly from Lie groups. We will show that
physically relevant systems are obtained this way.

The invariants of the bracket determine the manifold
on which the system evolves. It is thus important to
understand what sort of constraints they impose on a
system.
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Overview

• Review of reduction of a Lagrangian system to an
Eulerian system using relabeling symmetry.

• Two prototypical examples: the rigid body (finite
dimensional) and the 2–D ideal fluid (infinite
dimensional).

• We will introduce the semidirect product defined
by the action of a Lie group on a manifold. We
illustrate this by two physical examples, the heavy

top and low-β reduced MHD.

• Finally we look at a nonsemidirect example and
discuss work in progress.
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Reduction for the Free Rigid Body

Hamiltonian for the free rigid body in terms of Euler
angles:

H(pφ, pψ, pθ, φ, ψ, θ) =

1

2

{

[(pφ − pψ cos θ) sinψ + pθ sin θ cosψ]
2

I1 sin2 θ

+
[(pθ − pψ cos θ) cosψ − pθ sin θ sinψ]

2

I2 sin2 θ
+
p2

ψ

I3

}

Equations of motion are generated using the canonical
bracket:

{f , g} =
∂f

∂φ

∂g

∂pφ
+
∂f

∂ψ

∂g

∂pψ
+
∂f

∂θ

∂g

∂pθ
− (f ←→ g)

Here we have 3 degrees of freedom (6 coordinates).
The configuration space is the rotation group SO(3),
the phase space is T ∗SO(3).
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However, there is a possible reduction for this system.
In terms of angular momenta,

H(pφ, pψ, pθ, φ, ψ, θ) −→ H(`1, `2, `3) =

3
∑

i=1

`2i
2Ii

Under this noncanonical mapping, the bracket
becomes of the Lie–Poisson form

{f , g} = ` ·
∂f

∂`
×
∂g

∂`

The equations of motion generated by the bracket are
permutations of

˙̀
1 =

I2 − I3
I2 I3

`2 `3

These are Euler’s equations for the rigid body. The
Hamiltonian is conserved, and so is the quantity

C =
3

∑

i=1

`2i

which commutes with any f . We call C a Casimir

invariant.
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Reduction for the 2–D Ideal Fluid

Hamiltonian functional:

H[q;π] =

∫

D

(

π2

2ρ0

+ ρ0U

)

d2a

This together with the canonical bracket

{F ,G} =

∫

D

[

δF

δq

δG

δπ
−
δG

δq

δF

δπ

]

d2a

generates the equations of motion for a Lagrangian
fluid. The information about the position of every fluid
element at any time is contained in the model. There
is a relabeling symmetry of the initial condition labels,
a.
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We introduce the streamfunction φ

v(x, t) = (−∂y φ, ∂x φ)

so that ∇ · v = 0 is automatically satisfied, and the
vorticity

ω(x, t) = ẑ · ∇ × v .

The noncanonical transformation from Lagrangian to
Eulerian variables is

v(x, t) =

∫

D

π(a, t)

ρ0

δ(x− q(a, t)) d2a .

Then, after some manipulation involving integration by
parts we get the bracket

{F ,G} =

∫

D

ω

[

δF

δω
,
δG

δω

]

d2x

where

[f , g] :=
∂f

∂x

∂g

∂y
−
∂f

∂y

∂g

∂x
.
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The equation of motion generated by the bracket and
the transformed Hamiltonian

H[ω] = −
1

2

∫

D

φω d2x =
1

2

∫

D

|∇φ|2 d2x

is just Euler’s equation for an the ideal fluid

ω̇(x) = −[φ , ω] .

This has a Casimir given by

C[ω] =

∫

D

f (ω(x)) d2x, f arbitrary.
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Semidirect Product

Given two elements A,A′ of a Lie group G and two
elements x,x′ of a vector space V we can make a new
Lie group called the semidirect product of G and the
(Abelian) group V with an operation defined by

(A,x) · (A′,x′) := (AA′,x +Ax
′)

The term Ax
′ implies that G acts on V in some way.

The simplest example is when G is the rotation group
SO(3) and V is R3. Then the matrix representation
of G just acts by matrix multiplication. In that case
we have the 6-parameter Galilean group of rotations
and translations.

We can form a Lie algebra g and thus a Lie–Poisson
bracket from the semidirect product of G and V .
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The Heavy Top

The Lie–Poisson bracket for the semidirect product
of the rotation group and R3 is

{f , g} = ` ·

(

∂f

∂`
×
∂g

∂`

)

+α ·

(

∂f

∂`
×
∂g

∂α
+
∂f

∂α
×
∂g

∂`

)

where α denote a 3-vector. The Casimirs for this
bracket are

C1 = α2 , C2 = ` · α .

For a Hamiltonian quadratic in ` the vector α rotates
rigidly with the body. The Casimir C2 tells us there is
still an ambiguity to the orientation of the body: we
can rotate it about α.

9



By using

H(`, α) =

3
∑

i=1

`2i
2Ii

+ α · c

we get the prototypical example of a semidirect product
system, the heavy rigid body (in the body frame):

˙̀
1 =

I2 − I3
I2 I3

`2 `3 − α2 c3 + α3 c2

α̇1 =
`3α2

I3
−
`2α3

I2

�����������

�
�
�
�
�
�
�
�

c

O

α
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Low–β Reduced MHD

The semidirect product bracket for two fields is

{F ,G} =

∫

D

(

ω

[

δF

δω
,
δG

δω

]

+ ψ

([

δF

δω
,
δG

δψ

]

+

[

δF

δψ
,
δG

δω

]))

d2x

If ω = ∇2φ, where φ is the electric potential, ψ is the
magnetic flux, and J = ∇2ψ is the current, then the
Hamiltonian

H[ω;ψ] =
1

2

∫

D

(

|∇φ|2 + |∇ψ|2
)

d2x

with the above bracket gives us

ω̇ = [ψ, J ] + [ω, φ] ,

ψ̇ = [ψ, φ] ,

a model for low-β reduced MHD derived by Morrison
and Hazeltine.
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The bracket has Casimir invariants

C1[ψ] =

∫

D

f(ψ) d2x, C2[ω;ψ] =

∫

D

ω g(ψ) d2x.

The first has the same form as the one for 2–D Euler
and has the same interpretation. To make sense of the
second one let g(ψ) = δ(ψ − ψ0).

C2 −→

∮

D

ω(ψ0, θ) dθ

The “projection” of ω on any contour remains
constant. However on a given contour the fluid
elements may still move around: there is still a
relabeling symmetry, for each contour.
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Putting Labels on a Rigid-body

Remember that taking a semidirect product restricted
the symmetry group of the body to rotations about α.
If we take another semidirect product to get

{f , g} = ` ·

(

∂f

∂`
×
∂g

∂`

)

+ α ·

(

∂f

∂`
×
∂g

∂α
+
∂f

∂α
×
∂g

∂`

)

+ β ·

(

∂f

∂`
×
∂g

∂β
+
∂f

∂β
×
∂g

∂`

)

where β is a 3-vector, the new bracket has Casimirs

C1 = α2 , C2 = β2, C3 = α · β .

The angular momentum ` has disappeared from the
Casimirs.
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This can model a rigid body with two forces acting
on it.
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β

cβ

Note that knowing α and β completely specifies the
orientation of the rigid body. In other words, by
taking semidirect products we have reintroduced the
Lagrangian information into the bracket.
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Passive Scalars in an Ideal Fluid

For the ideal fluid, say low-β MHD with a second
advected quantity, χ, the Casimir is

C[ψ;χ] =

∫

D

f(ψ, χ) d2x, f arbitrary.

This Casimir amounts to being able to label two
contours. Locally this permits a unique labeling of
the fluid elements as long as χ and ψ are not constant
in some region. However, globally there is still some
ambiguity. Thus, in the infinite-dimensional case the
semidirect product is not equivalent to recovering the
full Lagrangian information, unless the contours do not
close and are monotonic.
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Beyond Semidirect: Cocycles

There are other ways to extend Lie algebras than the
semidirect product. We have investigated brackets of
the form

[α , β ]λ = Wλ
µν [αµ , βν ]

where λ is a component of an n-vector.

One example is the bracket derived by Morrison for
2–D compressible reduced MHD, which has four fields.
The Hamiltonian is

H[ω; v; p;φ] =
1

2

〈

|∇φ|2 + v2 +
(p− 2β x)2

β
+ |∇ψ|2

〉

.
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The bracket is rather large,

{A ,B} =

〈

ω ,

[

δA

δω
,
δB

δω

]〉

+

〈

v ,

[

δA

δω
,
δB

δv

]

+

[

δA

δv
,
δB

δω

]〉

+

〈

p ,

[

δA

δω
,
δB

δp

]

+

[

δA

δp
,
δB

δω

]〉

+

〈

ψ ,

[

δA

δω
,
δB

δψ

]

+

[

δA

δψ
,
δB

δω

]

− β

[

δA

δp
,
δB

δv

]

− β

[

δA

δv
,
δB

δp

]〉

The term proportional to β is an obstruction to the
semidirect product structure, and it cannot be removed
by a coordinate transformation. In the language of Lie
algebra cohomology it is a cocycle.
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Its Casimirs are

C1 =

∫

D

f(ψ) d2x

C2 =

∫

D

p g(ψ) d2x

C3 =

∫

D

v h(ψ) d2x

C4 =

∫

D

(

ωk(ψ) +
v p

β
k′(ψ)

)

d2x

These do not allow a labeling of the fluid elements. We
are still investigating the consequences of extensions
of this kind.
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Conclusions

• We gave an introduction to the reduction of
physical systems based on their symmetries.

• The prototypical examples were shown, the rigid
body and the 2–D ideal fluid.

• The semidirect product allows us to describe the
group acting on larger systems. This led to
the recovery of some or all of the Lagrangian
information.

• For general extensions things are very different: we
do not recover the Lagrangian information and the
Casimir represent constraints on the system which
do not have obvious physical significance. This is
the focus of much of our current work.

19


