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Channel flow: Injection into mixing region

Injection

against flow

Injection

with flow

• Four-rod stirring device,
used in industry;

• Channel flow is upwards;

• Direction of rotation
matters a lot!

• This is because it changes
the injection point.

• Flow breaks symmetry.

Goals:

• Connect features to topology of rod motion: stretching rate,
injection point, mixing region;

• Use topology to optimise stirring devices.

Experiments by E. Gouillart and O. Dauchot (CEA Saclay).

[movie 1] [movie 2] [movie 3]
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Mathematical description

Focus on closed systems.

Periodic stirring protocols in two dimensions can be described by a
homeomorphism ϕ : S→ S, where S is a surface.

For instance, in a closed circular container,

• ϕ describes the mapping of fluid elements after one full period
of stirring, obtained from solving the Stokes equation;

• S is the disc with holes in it, corresponding to the stirring rods
and distinguished periodic orbits.

Task: Categorise all possible ϕ.

ϕ and ψ are isotopic if ψ can be continuously ‘reached’ from ϕ
without moving the rods. Write ϕ ' ψ.
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Thurston–Nielsen classification theorem

ϕ is isotopic to a homeomorphism ϕ′, where ϕ′ is in one of the
following three categories:

1. finite-order: for some integer k > 0, ϕ′k ' identity;

2. reducible: ϕ′ leaves invariant a disjoint union of essential
simple closed curves, called reducing curves;

3. pseudo-Anosov: ϕ′ leaves invariant a pair of transverse
measured singular foliations, Fu and Fs, such
that ϕ′(Fu, µu) = (Fu, λ µu) and ϕ′(Fs, µs) = (Fs, λ−1µs),
for dilatation λ ∈ R+, λ > 1.

The three categories characterise the isotopy class of ϕ.

Number 3 is the one we want for good mixing

4 / 26



TN theory Train tracks Automata Minimisers Conclusions References

A singular foliation

The ‘pseudo’ in pseudo-Anosov refers to the fact that the foliations
can have a finite number of pronged singularities.

3-pronged singularity

Boundary singularity
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Visualising a singular foliation

• A four-rod stirring
protocol;

• Material lines trace out
leaves of the unstable
foliation;

• Each rod has a
1-pronged singularity.

• One 3-pronged
singularity in the bulk.

• One injection point
(top): corresponds to
boundary singularity;

[Boyland et al. (2000); Thiffeault et al. (2008)]
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Train tracks

=⇒

Thurston introduced train tracks as a way of characterising the
measured foliation. The name stems from the ‘cusps’ that look like
train switches.
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Train track map for figure-eight

a 7→ a 2̄ ā 1̄ a b 3̄ b̄ ā 1 a , b 7→ 2̄ ā 1̄ a b

Easy to show that this map is efficient: under repeated iteration,
cancellations of the type a ā or b b̄ never occur.

There are algorithms, such as Bestvina & Handel (1992), to find
efficient train tracks. (Toby Hall has an implementation in C++.)
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Topological Entropy

As the TT map is iterated, the number of symbols grows
exponentially, at a rate given by the topological entropy, log λ.
This is a lower bound on the minimal length of a material line
caught on the rods.

Find from the TT map by Abelianising: count the number of
occurences of a and b, and write as matrix:(

a
b

)
7→
(

5 2
2 1

)(
a
b

)
The largest eigenvalue of the matrix is λ = 1 +

√
2 ' 2.41. Hence,

asymptotically, the length of the ‘blob’ is multiplied by 2.41 for
each full stirring period.
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Two types of stirring protocols for 4 rods

2 injection points 1 injection pt, 1 3-prong sing.

Topological index formulas allow us to classify train tracks, and
thus stirring protocols.
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Pseudo-Anosovs involve ‘folding’ the foliation

2

1+2

(a)

(b)

(c)

2

1

3

4

2

1+2

3

4

Build pA’s ‘in reverse,’ by regarding
them as a sequence of gluings or fold-
ings of pieces of foliation.

Make a transition matrix showing
how edges 1–4 are folded:

1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1


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A train track folding automaton

The result is a folding automaton (a graph of train tracks):

• Each arrow represents a folding of an edge onto another.

• A transition matrix is associated with each arrow.

• pA’s are closed paths in this automaton, since they should
leave the foliation invariant.

• All pA’s are contained therein (up to conjugacy).
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Automata can be simple. . .
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Or elegant. . .

n = 5, 2× 3-prong
n = 7, 2× 4-prong
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Or pretty. . .

n = 7, 4× 3-prong
“The maple leaf”

n = 7, 2×3-prongs, 1×4-prong
“The scarab”

15 / 26



TN theory Train tracks Automata Minimisers Conclusions References

Or rather large. . .

n = 6
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Or just ridiculous. . .

n = 7, 2× 3-prongs (977 train tracks!)
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The Minimiser problem

• On a given surface, which pA has the least λ?

• Known for n = 3, 4, 5, 7 [Song et al. (2002); Ham & Song (2007);

Lanneau & Thiffeault (2009a,b)]

• Method: look at all closed paths until column or row norm
exceeded.

• Combinatorics explode: on a computer,
• n = 3: trivial;
• n = 4: milliseconds;
• n = 5: seconds;
• n = 7: about 9 months (just finished!);
• n = 6: decades??

• Minimiser is simple for n odd! New ideas are needed. . .

• Maximiser (completely diffferent question. . . )
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Orientable minimiser

• No punctures: surface of genus g ;

• If the foliation is orientable (vector field), then things are
much simpler;

• Action of the pA on first homology captures dilatation λ;

• Polynomials of degree 2g ;

• Procedure:
• We have a guess for the minimiser;
• Find all integer-coefficient, reciprocal polynomials that could

have smaller largest root;
• Show that they can’t correspond to pAs;
• For the smallest one that can, construct pA.

19 / 26



TN theory Train tracks Automata Minimisers Conclusions References

Newton’s formulas

We need an efficient way to bound the number of polynomials with
largest root smaller than λ. Given a reciprocal polynomial

P(x) = x2g + a1 x2g−1 + ...+ a2 x2 + a1 x + 1

we have Newton’s formulas for the traces,

Tr(φk
∗) = −

k−1∑
m=1

amTr(φk−m
∗ )− kak ,

where

• φ is a (hypothetical) pA associated with P(x);

• φ∗ is the matrix giving the action of the pA φ on first
homology;

• Tr(φ∗) is its trace.
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Bounding the traces
The trace satisfies

|Tr(φk
∗)| =

∣∣∣∣ g∑
m=1

(λk
m + λ−k

m )

∣∣∣∣ ≤ g(rk + r−k )

where λm are the roots of φ∗, and r = maxm(|λm|).

• Bound Tr(φk
∗) with r < λ, k = 1, . . . , g ;

• Use these g traces and Newton’s formulas to construct
candidate P(x);

• Overwhelming majority have fractional coeffs → discard!

• Carefully check the remaining polynomials:
• Is their largest root real?
• Is it strictly greater than all the other roots?
• Is it really less than λ?

• Largest tractable case: g = 8 (1012 polynomials).
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Lefschetz’s fixed point theorem

This procedure still leaves a fair number of polynomials — though
not enormous (10’s to 100’s, even for g = 8.)
The next step involves using Lefschetz’s fixed point theorem to
eliminate more polynomials:

L(φ) = 2− Tr(φ∗) =
∑

p∈Fix(φ)

Ind(φ, p)

where

• L(φ) is the Lefschetz number;

• Fix(φ) is set of fixed points of φ;

• Ind(φ, p) is index of φ at p.

We can easily compute L(φk ) for every iterate using Newton’s
formula.
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Eliminating polynomials

Outline of procedure: for a surface of genus g ,

• Use the Euler–Poincaré formula to list possible singularity
data for the foliations;

• For each singularity data, compute possible contributions to
the index (depending on how the singularities and their
separatrices are permuted);

• Check if index is consistent with Lefschetz’s theorem.

With this, we can reduce the number of polynomials to one or two!
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Minimisers for orientable foliations

g polynomial minimiser

2 X 4 − X 3 − X 2 − X + 1 ' 1.72208 †
3 X 6 − X 4 − X 3 − X 2 + 1 ' 1.40127
4 X 8 − X 5 − X 4 − X 3 + 1 ' 1.28064
5 X 10 + X 9 − X 7 − X 6 − X 5 − X 4 − X 3 + X + 1 ' 1.17628 ∗
6 X 12 − X 7 − X 6 − X 5 + 1 & 1.17628
7 X 14 + X 13 − X 9 − X 8 − X 7 − X 6 − X 5 + X + 1 & 1.11548
8 X 16 − X 9 − X 8 − X 7 + 1 & 1.12876

† Zhirov (1995)’s result; also for nonorientable [Lanneau–T];

∗ Lehmer’s number; realised by Leininger (2004)’s pA;

• For genus 6 to 8 we have not explicitly constructed the pA;

• Genus 6 is the first nondecreasing case.
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Conclusions

• Having rods undergo ‘braiding’ motion guarantees a minimal
amound of entropy (stretching of material lines).

• Topology also predicts injection into the mixing region,
important for open flows.

• Classify all rod motions and periodic orbits according to their
topological properties.

• Train track automata allow exploration of possible
pseudo-Anosovs.

• Proof of minimiser on disc for n = 7 and surface up to genus
8 (orientable case)

• Maximiser? (Some results — the silver mixer)
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