Train tracks

Automata 00000000 Minimisers 000000 Conclusions

References

Stirring, topology, and the simplest maps

Jean-Luc Thiffeault

Department of Mathematics University of Wisconsin – Madison

University of Florida, 5 April 2009

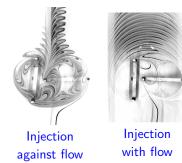
Collaborators:

Matthew Finn Emmanuelle Gouillart Erwan Lanneau Toby Hall University of Adelaide CNRS / Saint-Gobain Recherche CPT Marseille University of Liverpool

Train tracks 0000 Automata 00000000 Minimisers 000000 Conclusion

References

Channel flow: Injection into mixing region



- Four-rod stirring device, used in industry;
- Channel flow is upwards;
- Direction of rotation matters a lot!
- This is because it changes the injection point.
- Flow breaks symmetry.

Goals:

- Connect features to topology of rod motion: stretching rate, injection point, mixing region;
- Use topology to optimise stirring devices.

Experiments by E. Gouillart and O. Dauchot (CEA Saclay).

[movie 1] [movie 2] [movie 3]

TN	tł	ieory
00	oc	0

Mathematical description

Focus on closed systems.

Periodic stirring protocols in two dimensions can be described by a homeomorphism $\varphi : S \to S$, where S is a surface.

For instance, in a closed circular container,

- φ describes the mapping of fluid elements after one full period of stirring, obtained from solving the Stokes equation;
- S is the disc with holes in it, corresponding to the stirring rods and distinguished periodic orbits.
- Task: Categorise all possible φ .

 φ and ψ are isotopic if ψ can be continuously 'reached' from φ without moving the rods. Write $\varphi \simeq \psi$.

Train tracks

Automata 00000000 Minimisers 000000 Conclusions

References

Thurston–Nielsen classification theorem

 φ is isotopic to a homeomorphism $\varphi',$ where φ' is in one of the following three categories:

- 1. finite-order: for some integer k > 0, ${\varphi'}^k \simeq$ identity;
- 2. reducible: φ' leaves invariant a disjoint union of essential simple closed curves, called *reducing curves*;
- 3. pseudo-Anosov: φ' leaves invariant a pair of transverse measured singular foliations, $\mathfrak{F}^{\mathrm{u}}$ and $\mathfrak{F}^{\mathrm{s}}$, such that $\varphi'(\mathfrak{F}^{\mathrm{u}}, \mu^{\mathrm{u}}) = (\mathfrak{F}^{\mathrm{u}}, \lambda \, \mu^{\mathrm{u}})$ and $\varphi'(\mathfrak{F}^{\mathrm{s}}, \mu^{\mathrm{s}}) = (\mathfrak{F}^{\mathrm{s}}, \lambda^{-1} \mu^{\mathrm{s}})$, for dilatation $\lambda \in \mathbb{R}_{+}$, $\lambda > 1$.

The three categories characterise the isotopy class of φ .

Number 3 is the one we want for good mixing

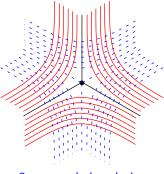
Train tracks 0000 Automata 00000000 Minimisers 000000

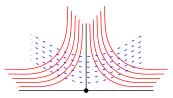
Conclusions

References

A singular foliation

The 'pseudo' in pseudo-Anosov refers to the fact that the foliations can have a finite number of pronged singularities.





Boundary singularity

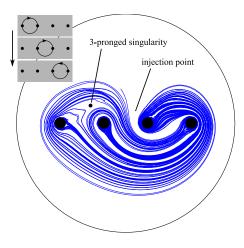
3-pronged singularity

TN theory

Automata 00000000 Minimisers 000000 Conclusions

References

Visualising a singular foliation



- A four-rod stirring protocol;
- Material lines trace out leaves of the unstable foliation;
- Each rod has a 1-pronged singularity.
- One 3-pronged singularity in the bulk.
- One injection point (top): corresponds to boundary singularity;

[Boyland et al. (2000); Thiffeault et al. (2008)]

Thurston introduced train tracks as a way of characterising the measured foliation. The name stems from the 'cusps' that look like train switches.

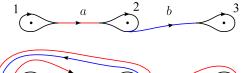
leory	Train
0	0000

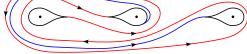
tracks

Autom 00000 Minimisers 000000 Conclusion

References

Train track map for figure-eight





 $a \mapsto a \overline{2} \,\overline{a} \,\overline{1} \,a \,b \,\overline{3} \,\overline{b} \,\overline{a} \,1 \,a \,, \qquad b \mapsto \overline{2} \,\overline{a} \,\overline{1} \,a \,b$

Easy to show that this map is efficient: under repeated iteration, cancellations of the type $a\bar{a}$ or $b\bar{b}$ never occur.

There are algorithms, such as Bestvina & Handel (1992), to find efficient train tracks. (Toby Hall has an implementation in C++.)

Train tracks 00●0 Automata 00000000

Minimisers 000000 Conclusions

References

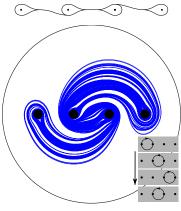
Topological Entropy

As the TT map is iterated, the number of symbols grows exponentially, at a rate given by the topological entropy, $\log \lambda$. This is a lower bound on the minimal length of a material line caught on the rods.

Find from the TT map by Abelianising: count the number of occurences of *a* and *b*, and write as matrix:

$$\begin{pmatrix} a \\ b \end{pmatrix} \mapsto \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}$$

The largest eigenvalue of the matrix is $\lambda = 1 + \sqrt{2} \simeq 2.41$. Hence, asymptotically, the length of the 'blob' is multiplied by 2.41 for each full stirring period.



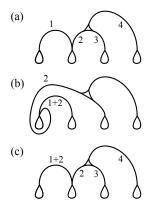
2 injection points

3-pronged singularity injection point

1 injection pt, 1 3-prong sing.

Topological index formulas allow us to classify train tracks, and thus stirring protocols.

Pseudo-Anosovs involve 'folding' the foliation



Build pA's 'in reverse,' by regarding them as a sequence of gluings or foldings of pieces of foliation.

Make a transition matrix showing how edges 1–4 are folded:

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

TN theory 00000

Automata 00000000 Minimisers 000000 Conclusions

References

A train track folding automaton

The result is a folding automaton (a graph of train tracks):

- Each arrow represents a folding of an edge onto another.
- A transition matrix is associated with each arrow.
- pA's are closed paths in this automaton, since they should leave the foliation invariant.
- All pA's are contained therein (up to conjugacy).

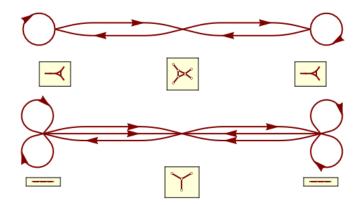
Т	Ν	t	h	ec	ory
0		0	С	0	

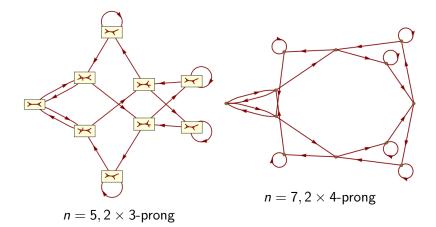
Automata

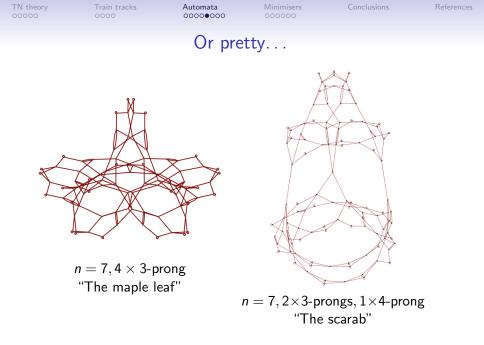
Minimisers 000000 Conclusions

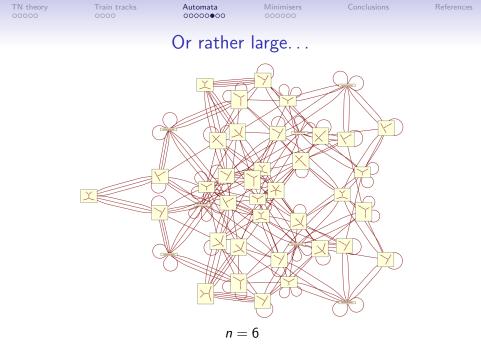
References

Automata can be simple...







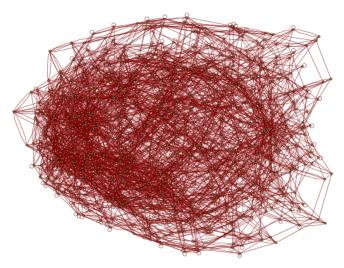


Train tracks 0000 Automata

Minimisers 000000 Conclusions

References

Or just ridiculous...



 $n = 7, 2 \times 3$ -prongs (977 train tracks!)

Т	Ν	tł	nec	ory
0	0		00	

Automata 0000000 Minimisers 000000 Conclusions

References

The Minimiser problem

- On a given surface, which pA has the least λ ?
- Known for n = 3, 4, 5, 7 [Song et al. (2002); Ham & Song (2007); Lanneau & Thiffeault (2009a,b)]
- Method: look at all closed paths until column or row norm exceeded.
- Combinatorics explode: on a computer,
 - *n* = 3: trivial;
 - *n* = 4: milliseconds;
 - *n* = 5: seconds;
 - n = 7: about 9 months (just finished!);
 - *n* = 6: decades??
- Minimiser is simple for *n* odd! New ideas are needed...
- Maximiser (completely diffferent question...)

Т	Ν	tł	ne	01	Y
0	0				

Automata 00000000 References

Orientable minimiser

- No punctures: surface of genus g;
- If the foliation is orientable (vector field), then things are much simpler;
- Action of the pA on first homology captures dilatation λ;
- Polynomials of degree 2g;
- Procedure:
 - We have a guess for the minimiser;
 - Find all integer-coefficient, reciprocal polynomials that could have smaller largest root;
 - Show that they can't correspond to pAs;
 - For the smallest one that can, construct pA.

Train tracks 0000 Automata 00000000 Minimisers 00000 Conclusions

References

Newton's formulas

We need an efficient way to bound the number of polynomials with largest root smaller than $\lambda.$ Given a reciprocal polynomial

$$P(x) = x^{2g} + a_1 x^{2g-1} + \dots + a_2 x^2 + a_1 x + 1$$

we have Newton's formulas for the traces,

$$\operatorname{Tr}(\phi_*^k) = -\sum_{m=1}^{k-1} a_m \operatorname{Tr}(\phi_*^{k-m}) - ka_k,$$

where

- ϕ is a (hypothetical) pA associated with P(x);
- ϕ_* is the matrix giving the action of the pA ϕ on first homology;
- $Tr(\phi_*)$ is its trace.

Т	Ν	t	h	eo	ry
0	0	00		0	

Automata 00000000 Minimisers

Conclusions

References

Bounding the traces

The trace satisfies

$$|\operatorname{Tr}(\phi_*^k)| = \left|\sum_{m=1}^g (\lambda_m^k + \lambda_m^{-k})\right| \le g(r^k + r^{-k})$$

where λ_m are the roots of ϕ_* , and $r = \max_m(|\lambda_m|)$.

- Bound $\operatorname{Tr}(\phi_*^k)$ with $r < \lambda$, $k = 1, \dots, g$;
- Use these g traces and Newton's formulas to construct candidate P(x);
- Overwhelming majority have fractional coeffs → discard!
- Carefully check the remaining polynomials:
 - Is their largest root real?
 - Is it strictly greater than all the other roots?
 - Is it really less than λ ?
- Largest tractable case: g = 8 (10¹² polynomials).

T	Ν	t	h	eo	ry
0	0	0		0	

Automata 00000000 Minimisers 000000 Conclusions

References

Lefschetz's fixed point theorem

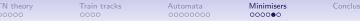
This procedure still leaves a fair number of polynomials — though not enormous (10's to 100's, even for g = 8.) The next step involves using Lefschetz's fixed point theorem to eliminate more polynomials:

$$L(\phi) = 2 - \operatorname{Tr}(\phi_*) = \sum_{\boldsymbol{p} \in \operatorname{Fix}(\phi)} \operatorname{Ind}(\phi, \boldsymbol{p})$$

where

- $L(\phi)$ is the Lefschetz number;
- Fix(φ) is set of fixed points of φ;
- $\operatorname{Ind}(\phi, p)$ is index of ϕ at p.

We can easily compute $L(\phi^k)$ for every iterate using Newton's formula.



Eliminating polynomials

Outline of procedure: for a surface of genus g,

- Use the Euler–Poincaré formula to list possible singularity data for the foliations:
- For each singularity data, compute possible contributions to the index (depending on how the singularities and their separatrices are permuted);
- Check if index is consistent with Lefschetz's theorem.

With this, we can reduce the number of polynomials to one or two!

Minimisers for orientable foliations

g	polynomial	minimiser
2	$X^4 - X^3 - X^2 - X + 1$	$\simeq 1.72208$ †
3	$X^6 - X^4 - X^3 - X^2 + 1$	$\simeq 1.40127$
4	$X^8 - X^5 - X^4 - X^3 + 1$	$\simeq 1.28064$
5	$X^{10} + X^9 - X^7 - X^6 - X^5 - X^4 - X^3 + X + 1$	$\simeq 1.17628$ *
6	$X^{12} - X^7 - X^6 - X^5 + 1$	$\gtrsim 1.17628$
7	$X^{14} + X^{13} - X^9 - X^8 - X^7 - X^6 - X^5 + X + 1$	$\gtrsim 1.11548$
8	$X^{16} - X^9 - X^8 - X^7 + 1$	$\gtrsim 1.12876$

- † Zhirov (1995)'s result; also for nonorientable [Lanneau-T];
- * Lehmer's number; realised by Leininger (2004)'s pA;
- For genus 6 to 8 we have not explicitly constructed the pA;
- Genus 6 is the first nondecreasing case.

TN theory 00000	Train tracks 0000	Automata 0000000	Minimisers 000000	Conclusions	References
		ions			

- Having rods undergo 'braiding' motion guarantees a minimal amound of entropy (stretching of material lines).
- Topology also predicts injection into the mixing region, important for open flows.
- Classify all rod motions and periodic orbits according to their topological properties.
- Train track automata allow exploration of possible pseudo-Anosovs.
- Proof of minimiser on disc for n = 7 and surface up to genus 8 (orientable case)
- Maximiser? (Some results the silver mixer)

Train tracks

Automata 00000000 Minimisers 000000 Conclusion

References

References

- Bestvina, M. & Handel, M. 1992 Train Tracks for Automorphisms of Free Groups. Ann. Math. 134, 1-51.
- Boyland, P. L., Aref, H. & Stremler, M. A. 2000 Topological fluid mechanics of stirring. J. Fluid Mech. 403, 277–304.
- D'Alessandro, D., Dahleh, M. & Mezić, I. 1999 Control of mixing in fluid flow: A maximum entropy approach. IEEE Transactions on Automatic Control 44, 1852–1863.
- Gouillart, E., Finn, M. D. & Thiffeault, J.-L. 2006 Topological Mixing with Ghost Rods. Phys. Rev. E 73, 036311.
- Ham, J.-Y. & Song, W. T. 2007 The minimum dilatation of pseudo-Anosov 5-braids. Experiment. Math. 16, 167–179.
- Lanneau, E. & Thiffeault, J.-L. 2009a Enumerating Pseudo-Anosov Diffeomorphisms of Punctured Discs. Preprint.
- Lanneau, E. & Thiffeault, J.-L. 2009b On the minimum dilatation of pseudo-Anosov diffeomorphisms on surfaces of small genus. Preprint.
- Leininger, C. J. 2004 On groups generated by two positive multi-twists: Teichmüller curves and Lehmer's number. Geom. Topol. 8, 1301–1359.
- Moussafir, J.-O. 2006 On the Entropy of Braids. Func. Anal. and Other Math. 1, 43-54.
- Song, W. T., Ko, K. H. & Los, J. E. 2002 Entropies of braids. J. Knot Th. Ramifications 11, 647-666.
- Thiffeault, J.-L. 2005 Measuring Topological Chaos. Phys. Rev. Lett. 94, 084502.
- Thiffeault, J.-L. & Finn, M. D. 2006 Topology, Braids, and Mixing in Fluids. Phil. Trans. R. Soc. Lond. A 364, 3251–3266.
- Thiffeault, J.-L., Finn, M. D., Gouillart, E. & Hall, T. 2008 Topology of Chaotic Mixing Patterns. Chaos 18, 033123.
- Thurston, W. P. 1988 On the geometry and dynamics of diffeomorphisms of surfaces. Bull. Am. Math. Soc. 19, 417–431.
- Zhirov, A. Y. 1995 On the minimum dilation of pseudo-Anosov diffeomorphisms of a double torus. Russ. Math. Surv. 50, 223–224.