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3D Standard ABP model

Stochastic equations for the 3D active Brownian particle (ABP) model:

ẋ = U e+
{√

2D∥ P∥(e) +
√
2D⊥ P⊥(e)

}
· ẇ1

ė = −2Dr e+
√
2Dr e× ẇ2 .

• translational noises D⊥ and D∥ along and perpendicular to the
direction of swimming e;

• the rotational noise Dr affects the swimming direction;

• diffusivities are related to particle mobility ×kBT ;
• wi(t) are independent standard Wiener processes (5 total);

• angular drift −2Dr e ensures unit length e.

[Peruani & Morelli (2007); van Teeffelen & Löwen (2008); Baskaran & Marchetti (2008);

Romanczuk & Schimansky-Geier (2011); Romanczuk et al. (2012); Kurzthaler et al. (2016);

Kurzthaler & Franosch (2017); Ai et al. (2013); Solon et al. (2015); Zöttl & Stark (2016);

Wagner et al. (2017); Redner et al. (2013); Stenhammar et al. (2014); Chen & Thiffeault

(2021)]
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3D Standard ABP model: Effective diffusivity

An ABP meanders around, and for long
times there is a well-known formula for its
effective diffusivity:

Deff = ∥U∥2/6Dr

This is a very useful dispersion result that
can be measured experimentally.

The ABP model is not quite general: only
one vector e is used to denote the
orientation. This is fine if the particle has
hydrodynamic axial symmetry.

Goal: investigate the general particle and
derive Deff .

Secondary goal: avoid using Euler angles or
similar parametrization!
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General 3D body

For an arbitrary body, instead of e we use an orthogonal matrix Q.

In general, need 6 coordinates: x = (x1, x2, x3) and ϕ = (ϕ1, ϕ2, ϕ3).

• ϕ is some vector of coordinates for SO(3) specifying the particle
orientation as Q(ϕ) (e.g., Euler angles, quaternions).

• Notation: A hat ̂ will indicate a matrix or vector with 6 rows and/or
columns, denoting position and angles:

e.g., x̂ = (x,ϕ)
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Force-velocity relation

In Stokes flow, force f and torque τ are linearly related to the particle’s
velocity u and angular velocity ω:(

u
ω

)
= M̂ ·

(
f
τ

)
M̂ :=

(
Mxx Mxϕ

Mϕx Mϕϕ

)
.

• The 6× 6 symmetric matrix M̂ is called the grand mobility matrix.

• M̂ is symmetric, so Mxϕ = M⊤
ϕx.

• Torque (and thus M̂) is defined w.r.t. a reference point.
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The coupling matrix

M̂ =

(
Mxx Mxϕ

Mϕx Mϕϕ

)
.

• There is a unique reference point called the center of hydrodynamic
reaction for which Mxϕ = M⊤

xϕ [e.g., Happel & Brenner (1983)].

• If the center of mass differs from the center of reaction, then Mxϕ

cannot be symmetric.

• In particular, it cannot be zero.

• Let’s call such a particle wobbly: Mxϕ ̸= M⊤
xϕ.

• Even a sphere with nonuniform density is wobbly.
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Hydrodynamic chirality

Mxϕ = 0 Mxϕ ̸= 0

M̂ =

(
Mxx Mxϕ

Mϕx Mϕϕ

)
.

• If the coupling Mxϕ is nonzero for any choice of reference point, a
particle is hydrodynamically chiral.

• This can coincide with geometric chirality, as above.
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Overdamped stochastic dynamics

Kinematics:
ẋ = u, ϕ̇ = L · ω .

The tensor L depends on the specific coordinate representation of SO(3).
[For subtle reasons, it makes sense to choose the center of mass for x.]

Write as deterministic plus stochastic parts:(
ẋ

ϕ̇

)
=

(
1 0
0 L

)
·
{(

U
Ω

)
+
√
2D̂ · ẇ

}
(General ABP model)

where ẇ is a vector of Wiener increments with correlation

E{ẇ(t)⊗ ẇ(s)} = δ(t− s) 1 .

The fluctuation-dissipation theorem (Stokes–Einstein) implies

D̂ = kBT M̂ .
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Remark on the overdamped limit

When passing from the underdamped (Langevin) dynamics to the
overdamped limit, there is a well-known stochastic drift [Lau & Lubensky

(2007); Farago & Grønbech-Jensen (2014); Farago & Grønbech-Jensen (2014); Farago (2017)]:

Û =

(
U
Ω

)
=

(
Uswim

Ωswim

)
+∇x̂ · D̂

where x̂ = (x,ϕ) and

∇x̂ · D̂ =

(
∇x · Dxx +∇ϕ · Dϕx

∇x · Dxϕ +∇ϕ · Dϕϕ

)
with ∇ϕ defined appropriately for SO(3) (∇ϕ := L⊤ · ∂ϕ).

For a free particle in a homogeneous medium (D̂ = Q̂ · D̂(0) · Q̂⊤),

∇x̂ · D̂ =

(
ϵ : Dϕx

0

)
, (ϵ)ijk = ϵijk ,

which vanishes when the centers of mass and reaction coincide.
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Fokker–Planck equation

Our earlier General ABP model:

d

dt
x̂ =

(
1 0
0 L

)
·
{
Û +

√
2D̂ · ẇ

}
can be turned into a Fokker–Planck equation for the probability
density p(x̂, t) = p(x,ϕ, t):

∂tp = −∇x̂ ·
{
Ûp−∇x̂ ·

(
D̂ p

)}
.

This equation is hard to solve, being a 6-dimensional PDE.

Our next task is to get rid of the angular dependence by passing to the
long time / large scale limit.
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Rescaling

For a small parameter δ, effect the diffusive rescaling

∂t → δ2 ∂t, ∇x → δ∇x, ∇ϕ → ∇ϕ.

(There is no such things as a “large” angle.)

As usual, we expand

p = p0 + δ p1 + δ2 p2 + · · · .
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Order δ0

The order δ0 part of the differential operator in the FP equation is

Lp = ∇ϕ ⊗∇ϕ :
(
Dϕϕp)−∇ϕ · (Ω p

)
.

At order δ0 we must solve
Lp0 = 0.

To keep things simple, assume Lp0 = 0 only has solutions which are
independent of ϕ (isotropic). Then we may write

p0 = P(x, t),

that is, our leading-order solution is some as-yet unknown function of the
large-scales variables x and t.

(i.e., at long times our particle randomizes its orientation completely.)
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Order δ1

At the next order in δ, we must solve

Lp1 = ∇x · (V P), V := U − 2∇ϕ · Dϕx .

By linearity, if we can solve

Lχ = V cell problem for χ

then we can write
p1 = ∇x · (V χ)

Let’s assume for now that we’ve solved this.
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Order δ2

As is common in this type of problem, we don’t actually need to solve
for p2. We just need to apply a solvability condition at order δ2 to obtain
a heat equation

∂tP = ∇x ⊗∇x : (DeffP)

where the effective diffusivity is

Deff = ⟨Dxx⟩ − sym ⟨U ⊗ χ⟩

and angle brackets denote an average over SO(3).

So, in principle we can find the effective diffusivity, as long as we can
solve Lχ = V .
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The elliptic problem

We want to solve Lχ = V :

Lχ = ∇ϕ ⊗∇ϕ :
(
Dϕϕχ)−∇ϕ · (Ωχ

)
= V

When the particle is of axially-symmetric shape, Dϕϕ = Dr 1 and the
second-order operator is the spherical Laplacian. (In that case ignore
the ψ Euler angle.)

We can then solve the problem by expanding V in terms of spherical
harmonics, which are eigenfunctions of the Laplacian.

[See for example Cates & Tailleur (2013); Sandoval (2013).]

But in general Dϕϕ can be essentially arbitrary.
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Avoiding spherical harmonics

We can completely avoid spherical harmonics by using the magic relation

LQ = −Z−1 · Q

where we define the positive-definite matrix

Z−1 = (TrDϕϕ)1 − Dϕϕ −Ω · ϵ

= kBT{(TrMϕϕ) 1 − Mϕϕ} −Ω · ϵ

[Obvious? It wasn’t to us! Harder calculation than it looks.]

Solution to Lχ = V is thus χ = −Z · Q.
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The effective diffusivity

We omit a lot of details, but eventually we find our sought-after isotropic
effective diffusivity:

Deff = 1
3 TrDxx + 1

3 U · Z · (U − 2∇ϕ · Dϕx)

where recall that U is the total velocity of the particle, including
noise-induced drift, and

Z−1 = (TrDϕϕ) 1 − Dϕϕ −Ω · ϵ .

For a hydrodynamically isotropic particle (Dϕϕ = Dr 1) with Ω = 0,
reduces to the ‘traditional’ result

Deff = 1
3 TrDxx +

1

6Dr
U · (U − 2ϵ : Dϕx)

with potentially a correction ϵ : Dϕx.
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Wobbly passive thermal particle

There is an insight here for the most classical of all particles, a thermal
passive particle (Uswim = Ωswim = 0), which still has a noise-induced drift:

U = ∇ϕ · Dϕx = ϵ : Dϕx , Ω = ∇ϕ · Dϕϕ = 0.

The term ϵ : Dϕx can only be nonzero if the centers of mass and reaction
don’t coincide.

When subjected to noise, such a ‘wobbly passive particle’ behaves a bit
like an ABP, with an effective noise-induced swimming velocity!

Does this have consequences?
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Passive thermal particle: Effective diffusivity

Part of the original motivation for this work was a claim in a recent
preprint that the noise-induced drift ∇ϕ · Dϕx for a wobbly particle leads
to an ‘enhanced’ effective diffusivity

Deff = 1
3 TrDh

xx ×
(
1 + 1

2 ∥∆x∥2/a2
)

wobbliness correction

where Dh
xx = kBT Mh

xx is the diffusivity tensor defined from the center of
hydrodynamic reaction, i.e., as if the particle was not wobbly.

However, accounting for the coupling terms between the rotational and
translational degrees of freedom reveals

Deff = 1
3 TrDh

xx

Conclude: even though the small-scale dynamics differ, the large-scale
dynamics of a wobbly particles are the same as an unwobbly one.
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Other results and future work

• Previous work called ‘chiral’ a particle with a net rotation Ω, but the
particle was axially symmetric.

• Here we can involve chirality through shape as well.

• Can derive a more complex, general formula for particles subjected to
external field (Sevilla, 2016).

• Can also allow dependence large-scale variables that can lead to a
novel large-scale drift.

• Our work actually focuses also on non-thermal active particles,
involving a generalized fluctuation-dissipation theorem.

• We derive the overdamped limit from the Langevin equation, which is
involves subtleties regarding the interpretation of multiplicative noise.

• 2D version is published: Thiffeault, J.-L. & Guo, J. (2022). Phys.
Rev. E, 106 (1), L012603
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