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Active and passive particles in complex environments

Lots of interest, old and new, in passive and active particles scattering in
periodic or random environments.

. . .
Brenner (1980)
Kamal & Keaveny (2018)
Alonso-Matilla et al. (2019)
Aceves-Sanchez et al. (2020)
Chakrabarti et al. (2020) =⇒
Amchin et al. (2022)
. . .

Many variations: different lattices, passive vs active, background flow,
flexible vs rigid. . . play movie
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http://www.math.wisc.edu/~jeanluc/movies/needle_in_lattice_zoom_out.mp4


Towards a mathematical theory

Existing literature is mostly numerical, with some notable partial analytical
results.

Today: take a few tentative steps towards a more analytical solution.

The difficulties and successes highlight promising directions for an
asymptotic treatment.

In particular, thinking in terms of configuration space helps conceptually,
and allows the reuse of 130-year-old results of Rayleigh in a different
context.
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A rod-shaped particle in a lattice of obstacles

2D periodic lattice of point obstacles.

Neglect hydrodynamic interactions.
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Brownian dynamics

Particle undergoes Brownian motion in space and angle:

dX = U dt +
√

2DX dW1

dY =
√

2DY dW2

dθ =
√

2Dr dW3

Diffusion tensor in body frame (X,Y, θ):DX 0 0
0 DY 0
0 0 Dr


(X,Y ) in body frame, (x, y) in lab frame.
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Brownian dynamics: Diffusion tensor

Expressed in the fixed lab (x, y) frame, the spatial diffusion tensor is

D(θ) =

(
DX cos2 θ +DY sin2 θ 1

2(DX −DY ) sin 2θ
1
2(DX −DY ) sin 2θ DX sin2 θ +DY cos2 θ

)
.
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Brownian dynamics: Fokker–Planck equation

Fokker–Planck equation for probability density p(r, θ, t):

∂tp+∇r · f + ∂θfθ = 0

Probability flux vector:

f = Up− D(θ) · ∇rp−Dr θ̂ p

Key point: account for obstacles with no-flux boundary condition

f · n̂ = 0

on the surface of the obstacle, in the full 3D configuration space (x, y, θ).

[See Chen & Thiffeault (2021) for a similar approach in a channel.]
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Configuration space: Fixed orientation

Configuration space gives allowable (x, y) for fixed θ.

A point in this periodic cell is a realizable configuration of the rod.
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Effective diffusivity: Rayleigh’s problem

We’ve mapped the problem exactly onto heat conduction in a perforated
medium.

For a disk-shaped particle, in the
absence of swimming (no drift,
U = 0), Rayleigh solved this by a
reflection method.

[“On the influence of obstacles arranged in rectangular order upon the properties of a

medium,” Rayleigh, L. (1892). The London, Edinburgh, and Dublin Philosophical

Magazine and Journal of Science, 34 (211), 481–502]
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Configuration space: Rotational diffusion

Now allowing θ ∈ [0, 2π] to vary, get 3D configuration space:

No-flux boundary condition at
surface of ‘obstacle,’ so again we
have a heat conduction problem, in a
domain with obstacles in the shape
of twisted ribbons.

As you might imagine, interesting
things can happen when the ‘ribbon’
overflows the cell (long particle), but
I won’t talk about that today.
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Homogenization approach

Rayleigh’s approach is not very well suited to drift (swimmers) or to
non-circular particles.

Homogenization theory allows us to find effective diffusivity by introducing
a long time T and large scale R to get an effective heat equation:

∂TΦ = ∇R · (Deff · ∇RΦ)

where the effective diffusivity tensor is

Deff =
1

|Ω \ω|

(
〈D〉+

∫
∂ω
n̂ · DχdA

)
.

Notation: 〈·〉 = integration over cell Ω, |·| = volume. The integral is over
the 2D surface of the 3D perforation ω in (x, y, θ).

What is χ?
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The cell problem

In the absence of drift, the cell problem for χ is

D : ∇r∇rχ = 0, r ∈ Ω \ω;

n̂ · D · ∇rχ = −n̂ · D, r ∈ ∂ω.

Numerically this is not so bad, but analytically there is little hope.
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The transformed cell problem

The anisotropic diffusivity is a challenge. It would be better if the problem
were harmonic.

Choose A such that A · D · AT = I:

∆r′χ′ = 0, r′ ∈ A · (Ω \ω);

n̂′ · ∇r′χ′ = −n̂′, r′ ∈ A · (∂ω),

where ∆r is the Laplacian, n′ = n̂ · A−1, and n̂′ = n′/‖n′‖.

Unfortunately, the linear transformation A has deformed the domain.
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The transformed cell problem (cont’d)

A transforms our rod-shaped particle to a slightly different rod (no big
deal), but the domain is now a parallelogram (which also depends on θ).
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Fixed orientation θ

Let’s solve the problem for a fixed θ, that is, neglecting rotational
diffusion.

For a small particle, natural to use matched asymptotic expansion.

• The inner problem lives on an infinite domain and can be solved by
conformal mapping, with unknown condition at ∞.

• The outer problem is essentially ∆χ = ∇δ, the (modified) Green’s
function for Poisson’s equation with periodic boundary conditions.
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The modified Green’s function: Fourier

∆φ = δ(r)− 1

|Ω|

For periodic boundary conditions, there is a Fourier series solution

φ(r) = − 1

|Ω|
∑
k 6=0

eik·r

k2

However, this is terrible! Converge is awful, and we don’t know how to get
the small-r asymptotics for the purposes of matching.
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The modified Green’s function: Ewald summation

Ewald summation (Poisson resummation) is a clever trick where the nasty
k sum is broken up into two parts that are exponentially convergent:

φ(r) = − 1

4π

∑
n

Γ
(
0, |r − n|2/4η

)
− 1

|Ω|
∑
k 6=0

e−k
2η

k2
eik·r

with η a cutoff parameter and Γ the incomplete Gamma function.

Possible to do the small-r asymptotics, but η-dependent cancellation is
annoying.
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The modified Green’s function: Improvement

Instead, use the far less familiar complex form

Φ(z, z̄) = − 1

2|Ω|
y2 +

1

2π
log ϑ1(z/2 , q), q := exp(iπτ),

where z = x+ iy, ϑ1 is a Jacobi elliptic theta function, and q is the nome.

The complex parameter τ describes the shape of the lattice cell:
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The modified Green’s function: Improvement

This can be rewritten as the (known?) explicit series

2πΦ(z, z̄) =
1

16πτi
(z − z̄)2 + log sin(z/2) + 2

∞∑
n=1

1

n

cosnz

1− q−2n
.

Note that the sum converges exponentially (|q| < 1), and is a single sum,
rather than the double-sums that appears in Ewald summation for a 2D
lattice. The magic comes from the fact that the trig terms are already
periodic in one direction.

The real part is doubly-periodic in the complex plane (but not the
imaginary part).

Machine precision requires about 11 terms for any z.

I’m curious why this form is not used in 2D boundary integral simulations?
Probably someone here can tell me.
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The modified Green’s function: Expansion

Remember that our goal was to get a small-|z| expansion of the Green’s
function, for matching to the inner solution. We can now find the small-|z|
analytic part

2πΦa(z) = − 1

8πτi
z2 + log z −

∞∑
n=1

An(τ)
z2n

(2n)!
.

The complex coefficients An are rather complicated, and involve
combinatorial Bernoulli numbers.

This is a price we have to pay: the An are doing a lot of work for us. they
are effectively carrying out Rayleigh’s reflection method.

The matching to an inner conformal transformation solves our diffusivity
problem in terms of the An.
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Discussion

• I won’t give the full expression for the effective diffusivity because it’s
fairly complicated and hasn’t been properly validated against
simulations yet.

• The goal of an asymptotic calculation is to get a better handle on
parametric dependence.

• To allow for rotational diffusivity, can average over θ for small
particles.

• We are in the process of doing this for active particles as well
(restoring the drift).

• In the densely-packed case, there’s some hope using the methods of
Keller (1963). Potentially very powerful: exploit small gaps in
configuration space.
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