Final Defense

 $\bigg($

 \setminus

Classification, Casimir Invariants, and Stability of Lie–Poisson Systems

Jean-Luc Thiffeault

Institute for Fusion Studies and Department of Physics The University of Texas at Austin

30 November 1998

 \bigwedge

Overview

• Many ^physical systems have ^a Hamiltonian formulation in terms of Lie–Poisson brackets obtained from Lie algebra extensions.

 $\bigg($

- We classify low-order brackets, thus showing that there are only ^a small number of independent normal forms. We make use of Lie algebra cohomology to achieve this.
- We also develop methods for finding the Casimir invariants of Lie–Poisson brackets. We introduce the concept of coextension.
- \setminus \bigcup • We look at the stability of equilibria of Lie–Poisson systems, using the method of dynamical accessibility, which uses the bracket directly. This is closely related to the energy-Casimir method.

 \bigwedge

Hamiltonian Formulation

 $\bigg($

 \setminus

A system of equations has ^a Hamiltonian formulation if it can be written in the form

$$
\dot{\xi}^{\lambda}(\mathbf{x},t) = \left\{\xi^{\lambda}, H\right\}
$$

where H is a Hamiltonian functional, and $\xi(\mathbf{x})$ represents a vector of field variables (vorticity, temperature, . . .).

The Poisson bracket { , } is antisymmetric and satisfies the Jacobi identity,

 $\{F, \{G, H\}\} + \{G, \{H, F\}\} + \{H, \{F, G\}\} = 0.$

This tells us that there exist local canonical coordinates.

 \bigwedge

The Lie–Poisson Bracket

We define the Lie–Poisson bracket for one field variable as

$$
\left\{ \{F, G\} \coloneqq \int_{\Omega} \omega(\mathbf{x}', t) \left[\frac{\delta F}{\delta \omega(\mathbf{x}', t)} , \frac{\delta G}{\delta \omega(\mathbf{x}', t)} \right] d^2 x' \right\}
$$

The spatial coordinates are $\mathbf{x} = (x, y)$, and the inner bracket is the 2-D Jacobian,

$$
[a, b] = \frac{\partial a}{\partial x} \frac{\partial b}{\partial y} - \frac{\partial b}{\partial x} \frac{\partial a}{\partial y}.
$$

The 2-D fluid domain is denoted by Ω .

 $\bigg($

 \setminus

 \bigwedge

The 2-D Euler Equation

Consider the Hamiltonian

 $\bigg($

$$
H[\omega] = \frac{1}{2} \int_{\Omega} |\nabla \phi(\mathbf{x}, t)|^2 d^2 x, \qquad \frac{\delta H}{\delta \omega} = -\phi,
$$

where ϕ is the streamfunction and $\omega = \nabla^2 \phi$ is the vorticity. Inserting this into the Lie–Poisson bracket, we have

$$
\dot{\omega}(\mathbf{x},t) = \{\omega, H\} = \int_{\Omega} \omega(\mathbf{x}',t) \left[\frac{\delta \omega(\mathbf{x},t)}{\delta \omega(\mathbf{x}',t)}, \frac{\delta H}{\delta \omega(\mathbf{x}',t)} \right] d^2 x'
$$

\n
$$
= \int_{\Omega} \omega(\mathbf{x}',t) \left[\delta(\mathbf{x}-\mathbf{x}') , -\phi(\mathbf{x}',t) \right] d^2 x'
$$

\n
$$
= \int_{\Omega} \delta(\mathbf{x}-\mathbf{x}') \left[\omega(\mathbf{x}',t), \phi(\mathbf{x}',t) \right] d^2 x' = \left[\omega(\mathbf{x},t), \phi(\mathbf{x},t) \right],
$$

 $\begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$ which is Euler's equation for the 2-D ideal fluid. \bigwedge

Lie–Poisson Bracket Extensions

Now, say we wish to describe ^a ^physical system consisting of several field variables. The most general linear combination of one-field brackets is

 $\bigg($

 \setminus

$$
\{F, G\} = \int_{\Omega} W_{\lambda}^{\mu\nu} \xi^{\lambda}(\mathbf{x}', t) \left[\frac{\delta F}{\delta \xi^{\mu}(\mathbf{x}', t)} , \frac{\delta G}{\delta \xi^{\nu}(\mathbf{x}', t)} \right] d^{2}x'
$$

where repeated indices are summed from 0 to n. The 3-tensor W is constant, and determines the structure of the bracket.

We call this type of bracket an extension of the one-field bracket.

 \bigwedge

Properties of W

In order for the extension to be ^a good Poisson bracket, it must satisfy

 $\bigg($

1. Antisymmetry: Since the inner bracket [,] is already antisymmetric, W must be symmetric in its upper indices:

$$
W_{\lambda}{}^{\mu\nu}=W_{\lambda}{}^{\nu\mu}\Bigg|\,.
$$

2. Jacobi identity: assuming the inner bracket [,] satisfies Jacobi, it is easy to show that W must satisfy

$$
W_{\lambda}^{\ \sigma\mu}W_{\sigma}^{\ \tau\nu}=W_{\lambda}^{\ \sigma\nu}W_{\sigma}^{\ \tau\mu}\ .
$$

that those matrices commute. \bigcup If we look at W as a collection of matrices $W^{(\mu)}$, then this means

 \bigwedge

Example: Compressible Reduced MHD

The four-field model derived by Hazeltine et al. (1987) for 2-D compressible reduced MHD (CRMHD) has ^a Lie–Poisson structure. The model includes compressibility and finite ion Larmor radius effects. The field variables are

- ω vorticity
- v parallel velocity
- p pressure
- ψ magnetic flux

and are functions of (x, y, t) .

 $\bigg($

 $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ There is also a constant parameter β_e that measures compressibility.

 \bigwedge

The equations of motion for CRMHD are

 $\bigg($

 \setminus

$$
\dot{\omega} = [\omega, \phi] + [\psi, J] + 2[p, x]
$$

$$
\dot{v} = [v, \phi] + [\psi, p] + 2\beta_e [x, \psi]
$$

$$
\dot{p} = [p, \phi] + \beta_e [\psi, v]
$$

$$
\dot{\psi} = [\psi, \phi],
$$

where $\omega = \nabla^2 \phi$, ϕ is the electric potential, ψ is the magnetic flux, and $J = \nabla^2 \psi$ is the current.

The Hamiltonian functional is just the total energy,

$$
H[\omega, v, p, \psi] = \frac{1}{2} \int_{\Omega} \left(|\nabla \phi|^2 + v^2 + \frac{(p - 2\beta_{\text{e}} v)^2}{\beta_{\text{e}}} + |\nabla \psi|^2 \right) d^2x.
$$

 \bigwedge

The equations for CRMHD can be obtained by inserting this Hamiltonian into the Lie–Poisson bracket

 $\bigg($

 \setminus

$$
\{F, G\} = \int_{\Omega} \left(\omega \left[\frac{\delta F}{\delta \omega}, \frac{\delta G}{\delta \omega} \right] + v \left(\left[\frac{\delta F}{\delta \omega}, \frac{\delta G}{\delta v} \right] + \left[\frac{\delta F}{\delta v}, \frac{\delta G}{\delta \omega} \right] \right) \right)
$$

$$
+ p \left(\left[\frac{\delta F}{\delta \omega}, \frac{\delta G}{\delta p} \right] + \left[\frac{\delta F}{\delta p}, \frac{\delta G}{\delta \omega} \right] \right) + \psi \left(\left[\frac{\delta F}{\delta \omega}, \frac{\delta G}{\delta \psi} \right] + \left[\frac{\delta F}{\delta \psi}, \frac{\delta G}{\delta \omega} \right] \right)
$$

$$
- \beta_{e} \psi \left(\left[\frac{\delta F}{\delta p}, \frac{\delta G}{\delta v} \right] + \left[\frac{\delta F}{\delta v}, \frac{\delta G}{\delta p} \right] \right) \right) d^{2}x.
$$

Comparing this to our definition of the Lie–Poisson bracket, with the identification $\left[(\xi^0, \xi^1, \xi^2, \xi^3) = (\omega, v, p, \psi) \right]$, we can read off the tensor W ...

 \bigwedge

$$
W^{(0)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \qquad W^{(1)} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -\beta_{e} & 0 \end{pmatrix},
$$

$$
W^{(2)} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & -\beta_{e} & 0 & 0 \end{pmatrix}, \qquad W^{(3)} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}.
$$

holds. (Note the lower-triangular structure.) \bigcup It is easily verified that these commute, so that the Jacobi identity

Since W is a 3-tensor, we can represent it as a cube:

 $\bigg($

 \setminus

The vertical axis is the lower index of $W_{\lambda}^{\mu\nu}$, with the origin at the top rear. The two horizontal axes are the symmetric upper indices.

 \bigwedge

Classification of Brackets

How many independent extensions are there?

The answer amounts to finding normal forms for W , independent under coordinate transformations.

Threefold process:

 $\bigg($

 \setminus

- 1. Decomposition into ^a direct sum.
- 2. Transforming the matrices $W^{(\mu)}$ to lower-triangular form.
- 3. Finally, the hard part is to use Lie algebra cohomology to (almost) achieve the classification.

 \bigwedge

Classification 1: Direct Sum Structure

 $\bigg($

A set of commuting matrices, by ^a coordinate transformation, can always be put in block-diagonal form. Then, the symmetry of the upper indices of W implies the following structure:

✫ can focus on each block independently. \bigcup Each block corresponds to a degenerate eigenvalue of the $W^{(\mu)}$. We

 \bigwedge

Classification 2: Lower-triangular Form

We focus on a single block, and thus assume that the $W^{(\mu)}$ have $(n + 1)$ -fold degenerate eigenvalues.

A set of commuting matrices can always be put into lower-triangular form by ^a coordinate transformation.

 $\bigg($

 \setminus

Once we do this, by the symmetry of the upper indices of W it is easy to show that only the eigenvalue of $W^{(0)}$ can be nonzero. Furthermore, if it is nonzero it can be rescaled to unity. We assume this is the case.

 \bigwedge

The red cubes form ^a solvable subalgebra, and are constrained by the commutation requirement. The blue cubes represent unit elements.

 \setminus

Classification 3: Cohomology

The problem of classifying extensions is reduced to classifying the solvable (red) part of the extension. This is achieved by the techniques of Lie algebra cohomology.

Cohomology gives us ^a class of linear transformations that preserve the lower-triangular structure of the extensions.

The parts of the extension that can be removed (i.e., made to vanish) by such transformations are called coboundaries.

What is left are nontrivial cocycles.

 $\bigg($

 \setminus

(Cohomology does not quite get it all...)

 \bigwedge

Pure Semidirect Sum

A common form for the bracket is the semidirect sum (SDS), for which the solvable part of W vanishes:

 $\sqrt{\frac{1}{1+\alpha^2}}$ Note that CRMHD does not have ^a semidirect sum structure because of its extra nonzero blocks, proportional to β_e (a cocycle).

 $\bigg($

 \bigwedge

Leibniz Extension

 $\bigg($

The opposite extreme to the pure semidirect sum is the case for which none of the $W^{(\mu)}$ vanish. Then W must have the structure

 $\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$ This is called the Leibniz extension. All the cubes, red and blue, are equal to unity.

 \bigwedge

$\bigg($ \bigwedge Alternate name: $\mathbf{Q}^*\mathbf{Bert}$ extension... **PLAYER** ROUND \setminus \bigcup

In between these two extreme cases, there are other possible extensions, including the CRMHD bracket.

 $\bigg($

 \setminus

None of these normal forms contains any free parameter!

(Do not expect this to be true at order ⁶ and beyond.)

 \bigwedge

Casimir Invariants

Noncanonical brackets can have Casimir invariants, which are functionals C that commute with every other functional:

$$
\{F, C\} \equiv 0, \quad \text{for all } F.
$$

Casimirs are conserved quantities for any Hamiltonian.

For Lie–Poisson brackets, in terms of W , the Casimir condition is

$$
W_{\lambda}^{\mu\nu}\left[\frac{\delta C}{\delta \xi^{\mu}}, \xi^{\lambda}\right] = 0, \quad \nu = 0, \dots, n.
$$

We assume the form

 $\bigg($

 \setminus

$$
C[\xi] = \int_{\Omega} C(\xi(\mathbf{x})) d^2 x. \qquad \left(\frac{\delta C}{\delta \xi} \longrightarrow \frac{\partial C}{\partial \xi}\right)
$$

 \bigwedge

Assuming the derivation property for [,] and independence of the brackets $[\xi^{\sigma}, \xi^{\lambda}]$, we can rewrite the Casimir condition as

$$
W_{\lambda}^{\mu\nu}C_{,\mu\sigma}=W_{,\sigma}^{\mu\nu}C_{,\mu\lambda}\bigg|,\quad\lambda,\sigma,\nu=0,\ldots,n,
$$

where $\mathcal{C}_{,\boldsymbol{\mu}} \coloneqq \partial \mathcal{C}/\partial \xi^{\boldsymbol{\mu}}.$

 $\bigg($

 \setminus

The key to solving this equation is to take advantage of the lower-triangular structure of the $W^{(\mu)}$, and write

$$
g^{\nu\mu}\mathcal{C}_{,\mu\sigma} = \widetilde{W}_{\sigma}{}^{\nu\mu}\mathcal{C}_{,\mu n} + \delta^{\nu}{}_{\sigma}\mathcal{C}_{,0n},
$$

where now the greek indices run from 1 to $n-1$, and

$$
g^{\mu\nu} \coloneqq W_n{}^{\mu\nu}
$$

is an $n-1$ by $n-1$ symmetric matrix.

 \bigwedge

If g is nonsingular, with inverse \bar{g} , the solution is

$$
\mathcal{C}_{,\tau\sigma} = A^{\mu}_{\tau\sigma} \, \mathcal{C}_{,\mu n} + \bar{g}_{\tau\sigma} \, \mathcal{C}_{,0n} \,, \tag{*}
$$

with

 \setminus

 $\bigg($

$$
A^{\mu}_{\tau\sigma} \coloneqq \bar{g}_{\tau\nu} \, \widetilde{W}_{\sigma}{}^{\nu\mu} \quad ,
$$

where A is the coextension. It satisfies the same properties as W , but with opposite indices:

$$
A^{\mu}_{\tau\sigma} = A^{\mu}_{\sigma\tau} , \qquad A_{(\tau)} A_{(\sigma)} = A_{(\sigma)} A_{(\tau)} .
$$

These conditions are necessary to be able to integrate $(*)$.

(Singular ^g quite ^a bit trickier. . .)

 \bigwedge

 $\bigg($ The $n + 1$ independent solutions to the differential equation are

$$
\mathcal{C}^{\nu}(\xi^0, \xi^1, \dots, \xi^n) = \sum_{i \geq 0} D^{(i)\nu}_{\tau_1 \tau_2 \dots \tau_{(i+1)}} \frac{\xi^{\tau_1} \xi^{\tau_2} \dots \xi^{\tau_{(i+1)}}}{(i+1)!} f_i^{\nu}(\xi^n),
$$

where f is arbitrary, f_i is the *i*th derivative of f, and

$$
D_{\tau}^{(0)\nu} := \delta_{\tau}^{\nu} ,
$$

\n
$$
D_{\tau_1 \tau_2}^{(1)\nu} := A_{\tau_1 \tau_2}^{\nu} ,
$$

\n
$$
D_{\tau_1 \tau_2 \tau_3}^{(2)\nu} := A_{\tau_1 \tau_2}^{\mu_1} A_{\mu_1 \tau_3}^{\nu} ,
$$

\n
$$
\vdots
$$

\n
$$
D_{\tau_1 \tau_2 \dots \tau_{(i+1)}}^{(i)\nu} := A_{\tau_1 \tau_2}^{\mu_1} A_{\mu_1 \tau_3}^{\mu_2} \cdots A_{\mu_{(i-2)} \tau_i}^{\mu_{(i-1)}} A_{\mu_{(i-1)} \tau_{(i+1)}}^{\nu} .
$$

\nThe properties of the coextension imply that the $D^{(i)}$ are

 $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ symmetric in all their lower indices. \bigwedge

CRMHD Casimirs

For CRMHD $(n = 3)$, the Casimirs are

 $\bigg($

$$
C^{0} = \int_{\Omega} \left(\omega f^{0}(\psi) - \frac{1}{\beta_{e}} p v f^{0'}(\psi) \right) d^{2}x, \qquad C^{2} = \int_{\Omega} p f^{2}(\psi) d^{2}x,
$$

$$
C^{1} = \int_{\Omega} v f^{1}(\psi) d^{2}x, \qquad C^{3} = \int_{\Omega} f^{3}(\psi) d^{2}x.
$$

4 arbitrary functions $f^0 - f^3$ of $\xi^3 = \psi$.

 $C³$ forces the magnetic flux ψ to be tied to the fluid elements, but not so for v and p . (This would be the case for a pure semidirect sum.)

 \setminus Note that would be hard to derive C^0 from the equations of motion, without the bracket.

 \bigwedge

Stability

Now that we have developed all this theory for Lie–Poisson brackets, let's put it to use. We determine sufficient conditions for the stability of general systems.

Two methods:

 $\bigg($

 \setminus

- Energy-Casimir: emphasizes invariants.
- Dynamical Accessibility: uses the bracket directly. Slightly more general. This is our preferred method.

For simplicity, we will contrast CRMHD with the pure semidirect sum.

 \bigwedge

The Energy-Casimir Method

Requiring that a solution ξ_e be a constrained minimum of the Hamiltonian,

 $\bigg($

 \setminus

$$
\delta(H+C)[\xi_{\rm e}]=:\delta F[\xi_{\rm e}]=0,
$$

gives an equilibrium solution. The solutions ξ_e is then said to be formally stable if $\delta^2 F[\xi_e]$ is definite. This is related to δW energy principles, which extremize the potential energy.

Does not capture equilibria where the bracket is singular.

 \bigwedge

Dynamical Accessibility

A slightly more general method for establishing formal stability uses dynamically accessible variations (DAV), defined as

$$
\delta \xi_{\mathrm{da}} \coloneqq \left\{ \mathcal{G} \, , \xi \right\} + \tfrac{1}{2} \left\{ \mathcal{G} \, , \, \left\{ \mathcal{G} \, , \xi \right\} \right\},
$$

with G given in terms of the generating functions χ_{μ} by

 $\bigg($

$$
\mathcal{G} \coloneqq \int_{\Omega} \xi^{\mu} \, \chi_{\mu} \, \mathrm{d}^2 x.
$$

DAV are variations that are constrained to remain on the symplectic leaves of the system. They preserve the Casimirs to second order. Stationary solutions of the Hamiltonian,

$$
\delta H_{\text{da}}[\xi_{\text{e}}] = 0,
$$

capture all possible equilibria of the equations of motion.

 \bigwedge

Energy of DAVs

The energy associated with the variations is

 $\bigg($

 \setminus

$$
\delta^2 H_{\text{da}}[\xi_{\text{e}}] = \frac{1}{2} \int_{\Omega} \left(\delta \xi_{\text{da}}^{\sigma} \frac{\delta^2 H}{\delta \xi^{\sigma} \delta \xi^{\tau}} \delta \xi_{\text{da}}^{\tau} - W_{\lambda}^{\mu \nu} \delta \xi_{\text{da}}^{\lambda} \left[\chi_{\mu}, \frac{\delta H}{\delta \xi^{\nu}} \right] \right) d^2 x
$$

In order to determine conditions for stability, we need to write $\delta^2 H_{\text{da}}$ in terms of the $\delta \xi_{\text{da}}^{\lambda}$ only (no explicit χ_{μ} dependence). In principle, this can always be done.

Positive-definiteness of $\delta^2 H_{da}[\xi_e]$ is a sufficient condition for formal stability.

 \bigwedge

Equilibrium Solutions of Semidirect Sum

An equilibrium $(\omega_e, \{\xi_e^{\mu}\})$ of the equations of motion for an SDS satisfies

 $\bigg($

$$
\dot{\omega}_{\rm e} = \left[\delta H / \delta \xi^0 \, , \omega_{\rm e} \right] + \sum_{\nu=1}^n \left[\delta H / \delta \xi^\nu \, , \xi_{\rm e}^\nu \right] = 0,
$$

$$
\dot{\xi}_{\rm e}^\mu = \left[\delta H / \delta \xi^0 \, , \xi_{\rm e}^\mu \right] = 0, \qquad \mu = 1, \dots, n,
$$

where we have labeled the 0th variable by ω . We can satisfy the ˙ $\dot{\xi}_{\text{e}}^{\mu} = 0$ equations by letting

$$
\frac{\delta H}{\delta \xi^0} = -\Phi(u), \qquad \xi_{\rm e}^{\mu} = \Xi^{\mu}(u), \quad \mu = 1, \dots, n,
$$

 $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ \bigcup for (so far) arbitrary functions $u(\mathbf{x})$, $\Phi(u)$, and $\Xi^{\mu}(u)$. The $\dot{\omega}_e = 0$ condition gives ^a differential equation for ^u.

 \bigwedge

CRMHD Equilibria

An equilibrium of the CRMHD equations satisfies

 $\bigg($

explicitly on x . \bigcup $\psi_{\rm e} = \Psi(u),$ $\phi_{\rm e} = \Phi(u),$ $v_{\rm e} = (k_1(u) + (k_2(u) + 2x) \Phi'(u)) / (1 - |\Phi'(u)|^2/\beta_{\rm e}),$ $p_e = (k_1(u) \Phi'(u) + \beta_e (k_2(u) + 2x)) / (1 - |\Phi'(u)|^2 / \beta_e),$ $\omega_{\rm e} \, \Phi'(u) - J_{\rm e} = k_3(u) + v_{\rm e} \, k_1'(u) + p_{\rm e} \, k_2'(u) + \beta_{\rm e}^{-1} \, p_{\rm e} \, v_{\rm e} \, \Phi''(u),$ with primes defined by $f'(u) = (d\Psi(u)/du)^{-1} df(u)/du$, and $u(\mathbf{x})$, $\Psi(u)$, $\Phi(u)$, and the $k_i(u)$ arbitrary functions. This is very different from the SDS case. In particular, the cocycle allows the equilibrium "advected" quantities v_e and p_e to depend

 \bigwedge

DAVs for Semidirect Sum

The dynamically accessible variations for an SDS are

 $\bigg($

 \setminus

$$
\delta\omega_{\text{da}} = [\omega, \chi_0] + \sum_{\nu=1}^n [\xi^\nu, \chi_\nu],
$$

$$
\delta\xi_{\text{da}}^\mu = [\xi^\mu, \chi_0], \qquad \mu = 1, \dots, n.
$$

Notice how all the $\delta \xi_{da}^{\mu}$ depend only on χ_0 : the allowed variations are tied to the fluid elements.

 \bigwedge

DAVs for CRMHD

The dynamically accessible variations for CRMHD are given by

$$
\delta\omega_{da} = [\omega, \chi_0] + [v, \chi_1] + [p, \chi_2] + [\psi, \chi_3],
$$

\n
$$
\delta v_{da} = [v, \chi_0] - \beta_e [\psi, \chi_2],
$$

\n
$$
\delta p_{da} = [p, \chi_0] - \beta_e [\psi, \chi_1],
$$

\n
$$
\delta\psi_{da} = [\psi, \chi_0].
$$

The DAV for ω is the same as for a semidirect sum.

 $\bigg($

 \setminus

However, the "advected" quantities v, p , and ψ now have independent variations, which can be specified by χ_2 , χ_1 , and χ_0 , respectively.

 \bigwedge

CRMHD Stability

The terms that involve gradients in the perturbation energy are

$$
\delta^2 H_{\rm da} = \int_{\Omega} \left(|\nabla \delta \phi_{\rm da} - \nabla (\Phi'(u) \, \delta \psi_{\rm da})|^2 + (1 - |\Phi'(u)|^2) |\nabla \delta \psi_{\rm da}|^2 + \cdots \right) d^2 x.
$$

These terms must be positive, so we require

 $\bigg($

 \setminus

$$
\left| \left| \Phi'(u) \right| < 1 \right|, \qquad \left(\left| \nabla \phi_e \right| < \left| \nabla \psi_e \right| \right),
$$

^a necessary condition for formal stability.

 \bigwedge

The remaining terms are a quadratic form in $\delta v_{\rm da}$, $\delta p_{\rm da}$, and $\delta \psi_{\rm da}$, which can be written

$$
\begin{pmatrix}\n1 & -\beta_e^{-1} \Phi' & -k'_1 - \beta_e^{-1} p_e \Phi'' \\
-\beta_e^{-1} \Phi' & \beta_e^{-1} & -k'_2 - \beta_e^{-1} v_e \Phi'' \\
-k'_1 - \beta_e^{-1} p_e \Phi'' & -k'_2 - \beta_e^{-1} v_e \Phi'' & \Theta(x, y)\n\end{pmatrix}
$$

where

 \setminus

 $\bigg($

$$
\Theta(x,y) := -k_3'(u) - v_e k_1''(u) - p_e k_2''(u) + \omega_e \Phi''(u) - \beta_e^{-1} p_e v_e \Phi'''(u) + \Phi'(u) \nabla^2 \Phi'(u).
$$

For positive-definiteness of this quadratic form, we require the principal minors of this matrix to be positive.

 \bigwedge

$$
\mu_1 = |1| > 0,
$$

$$
\mu_2 = \begin{vmatrix} 1 & -\beta_e^{-1} \Phi'(u) \\ -\beta_e^{-1} \Phi'(u) & \beta_e^{-1} \end{vmatrix} = \beta_e^{-1} \left(1 - \frac{|\Phi'(u)|^2}{\beta_e} \right) > 0,
$$

The positive-definiteness of μ_2 , combined with condition $|\Phi'(u)| < 1$, implies

 $\bigg($

$$
|\Phi'(u)|^2 < \min(1,\beta_e)
$$

which is part of ^a sufficient condition for stability. Thus the cocycle modifies the stability directly: it always makes the stability condition worse, because $\beta_e > 0$.

 $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ Finally, if we require that the determinant of the matrix be positive, we have ^a sufficient condition for formal stability.

 \bigwedge

Conclusions

- Classified Lie–Poisson bracket extensions, and found that for low orders there are very few independent brackets, with no free parameters.
- Developed techniques for finding Casimir invariants of Lie–Poisson brackets (coextension).

 $\bigg($

 \setminus

- Can use brackets or Casimirs to obtain general criteria for stability of Lie–Poisson systems.
- Equilibrium solutions for semidirect sum involve advected quantities that are tied to the fluid elements. Cocycles lead to richer equilibria (Destabilizing for CRMHD).

 \bigwedge