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Overview

• Many physical systems have a Hamiltonian formulation in

terms of Lie–Poisson brackets obtained from Lie algebra

extensions.

• We classify low-order brackets, thus showing that there are

only a small number of independent normal forms. We make

use of Lie algebra cohomology to achieve this.

• We also develop methods for finding the Casimir invariants of

Lie–Poisson brackets. We introduce the concept of coextension.

• We look at the stability of equilibria of Lie–Poisson systems,

using the method of dynamical accessibility, which uses the

bracket directly. This is closely related to the energy-Casimir

method.
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Hamiltonian Formulation

A system of equations has a Hamiltonian formulation if it can be

written in the form

ξ̇λ(x, t) =
{
ξλ , H

}

where H is a Hamiltonian functional, and ξ(x) represents a vector

of field variables (vorticity, temperature, . . . ).

The Poisson bracket { , } is antisymmetric and satisfies the Jacobi

identity,

{F , {G ,H}} + {G , {H ,F}} + {H , {F ,G}} = 0.

This tells us that there exist local canonical coordinates.
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The Lie–Poisson Bracket

We define the Lie–Poisson bracket for one field variable as

{F ,G} :=

∫

Ω

ω(x′, t)

[
δF

δω(x′, t)
,

δG

δω(x′, t)

]
d2x′

The spatial coordinates are x = (x, y), and the inner bracket is the

2-D Jacobian,

[ a , b ] =
∂a

∂x

∂b

∂y
−
∂b

∂x

∂a

∂y
.

The 2-D fluid domain is denoted by Ω.
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The 2-D Euler Equation

Consider the Hamiltonian

H[ω] = 1
2

∫

Ω

|∇φ(x, t)|2 d2x,
δH

δω
= −φ,

where φ is the streamfunction and ω = ∇2φ is the vorticity.

Inserting this into the Lie–Poisson bracket, we have

ω̇(x, t) = {ω ,H} =

∫

Ω

ω(x′, t)

[
δω(x, t)

δω(x′, t)
,

δH

δω(x′, t)

]
d2x′

=

∫

Ω

ω(x′, t) [ δ(x − x′) ,−φ(x′, t) ] d2x′

=

∫

Ω

δ(x − x′) [ω(x′, t) , φ(x′, t) ] d2x′ = [ω(x, t) , φ(x, t) ] ,

which is Euler’s equation for the 2-D ideal fluid.
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Lie–Poisson Bracket Extensions

Now, say we wish to describe a physical system consisting of

several field variables. The most general linear combination of

one-field brackets is

{F ,G} =

∫

Ω

Wλ
µν ξλ(x′, t)

[
δF

δξµ(x′, t)
,

δG

δξν(x′, t)

]
d2x′

where repeated indices are summed from 0 to n. The 3-tensor W is

constant, and determines the structure of the bracket.

We call this type of bracket an extension of the one-field bracket.
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Properties of W

In order for the extension to be a good Poisson bracket, it must

satisfy

1. Antisymmetry: Since the inner bracket [ , ] is already

antisymmetric, W must be symmetric in its upper indices:

Wλ
µν = Wλ

νµ .

2. Jacobi identity: assuming the inner bracket [ , ] satisfies Jacobi,

it is easy to show that W must satisfy

Wλ
σµWσ

τν = Wλ
σν Wσ

τµ .

If we look at W as a collection of matrices W (µ), then this means

that those matrices commute.
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Example: Compressible Reduced MHD

The four-field model derived by Hazeltine et al. (1987) for 2-D

compressible reduced MHD (CRMHD) has a Lie–Poisson structure.

The model includes compressibility and finite ion Larmor radius

effects. The field variables are

ω vorticity

v parallel velocity

p pressure

ψ magnetic flux

and are functions of (x, y, t).

There is also a constant parameter βe that measures

compressibility.
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The equations of motion for CRMHD are

ω̇ = [ω , φ ] + [ψ , J ] + 2 [ p , x ]

v̇ = [ v , φ ] + [ψ , p ] + 2βe [x , ψ ]

ṗ = [ p , φ ] + βe [ψ , v ]

ψ̇ = [ψ , φ ] ,

where ω = ∇2φ, φ is the electric potential, ψ is the magnetic flux,

and J = ∇2ψ is the current.

The Hamiltonian functional is just the total energy,

H[ω, v, p, ψ] =
1

2

∫

Ω


|∇φ|2 + v2 +

(p− 2βe x)
2

βe
+ |∇ψ|2


 d2x.
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The equations for CRMHD can be obtained by inserting this

Hamiltonian into the Lie–Poisson bracket

{F ,G} =

∫

Ω


ω

[
δF

δω
,
δG

δω

]
+ v

([
δF

δω
,
δG

δv

]
+

[
δF

δv
,
δG

δω

])

+ p

([
δF

δω
,
δG

δp

]
+

[
δF

δp
,
δG

δω

])
+ ψ

([
δF

δω
,
δG

δψ

]
+

[
δF

δψ
,
δG

δω

])

− βe ψ

([
δF

δp
,
δG

δv

]
+

[
δF

δv
,
δG

δp

])
 d2x.

Comparing this to our definition of the Lie–Poisson bracket, with

the identification (ξ0, ξ1, ξ2, ξ3) = (ω, v, p, ψ) , we can read off the

tensor W . . .
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The W tensor for CRMHD

W (0) =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



, W (1) =




0 0 0 0

1 0 0 0

0 0 0 0

0 0 −βe 0



,

W (2) =




0 0 0 0

0 0 0 0

1 0 0 0

0 −βe 0 0



, W (3) =




0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0



.

It is easily verified that these commute, so that the Jacobi identity

holds. (Note the lower-triangular structure.)
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Since W is a 3-tensor, we can represent it as a cube:

The vertical axis is the lower index of Wλ
µν , with the origin at the

top rear. The two horizontal axes are the symmetric upper indices.
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Classification of Brackets

How many independent extensions are there?

The answer amounts to finding normal forms for W , independent

under coordinate transformations.

Threefold process:

1. Decomposition into a direct sum.

2. Transforming the matrices W (µ) to lower-triangular form.

3. Finally, the hard part is to use Lie algebra cohomology to

(almost) achieve the classification.
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Classification 1: Direct Sum Structure

A set of commuting matrices, by a coordinate transformation, can

always be put in block-diagonal form. Then, the symmetry of the

upper indices of W implies the following structure:

Each block corresponds to a degenerate eigenvalue of the W (µ). We

can focus on each block independently.
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Classification 2: Lower-triangular Form

We focus on a single block, and thus assume that the W (µ) have

(n+ 1)-fold degenerate eigenvalues.

A set of commuting matrices can always be put into

lower-triangular form by a coordinate transformation.

Once we do this, by the symmetry of the upper indices of W it is

easy to show that only the eigenvalue of W (0) can be nonzero.

Furthermore, if it is nonzero it can be rescaled to unity. We assume

this is the case.
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The most general form of W for an extension is thus

The red cubes form a solvable subalgebra, and are constrained by

the commutation requirement. The blue cubes represent unit

elements.
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Classification 3: Cohomology

The problem of classifying extensions is reduced to classifying the

solvable (red) part of the extension. This is achieved by the

techniques of Lie algebra cohomology.

Cohomology gives us a class of linear transformations that preserve

the lower-triangular structure of the extensions.

The parts of the extension that can be removed (i.e., made to

vanish) by such transformations are called coboundaries.

What is left are nontrivial cocycles.

(Cohomology does not quite get it all...)
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Pure Semidirect Sum

A common form for the bracket is the semidirect sum (SDS), for

which the solvable part of W vanishes:

Note that CRMHD does not have a semidirect sum

structure because of its extra nonzero blocks, pro-

portional to βe (a cocycle).
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Leibniz Extension

The opposite extreme to the pure semidirect sum is the case for

which none of the W (µ) vanish. Then W must have the structure

This is called the Leibniz extension. All the cubes, red and blue,

are equal to unity.
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Alternate name: Q*Bert extension. . .
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In between these two extreme cases, there are other possible

extensions, including the CRMHD bracket.

Order Number of extensions

1 1

2 1

3 2

4 4

5 9

None of these normal forms contains any free parameter!

(Do not expect this to be true at order 6 and beyond.)
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Casimir Invariants

Noncanonical brackets can have Casimir invariants, which are

functionals C that commute with every other functional:

{F , C} ≡ 0, for all F .

Casimirs are conserved quantities for any Hamiltonian.

For Lie–Poisson brackets, in terms of W , the Casimir condition is

Wλ
µν

[
δC

δξµ
, ξλ

]
= 0, ν = 0, . . . , n.

We assume the form

C[ξ] =

∫

Ω

C(ξ(x)) d2x.

(
δC

δξ
−→

∂C

∂ξ

)
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Assuming the derivation property for [ , ] and independence of the

brackets
[
ξσ , ξλ

]
, we can rewrite the Casimir condition as

Wλ
µνC,µσ = W,σ

µνC,µλ , λ, σ, ν = 0, . . . , n,

where C,µ := ∂C/∂ξµ.

The key to solving this equation is to take advantage of the

lower-triangular structure of the W (µ), and write

gνµ C,µσ = W̃σ
νµC,µn + δν

σ C,0n,

where now the greek indices run from 1 to n− 1, and

gµν := Wn
µν

is an n− 1 by n− 1 symmetric matrix.
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If g is nonsingular, with inverse ḡ, the solution is

C,τσ = Aµ
τσ C,µn + ḡτσ C,0n , (*)

with

Aµ
τσ := ḡτν W̃σ

νµ ,

where A is the coextension. It satisfies the same properties as W ,

but with opposite indices:

Aµ
τσ = Aµ

στ , A(τ)A(σ) = A(σ)A(τ) .

These conditions are necessary to be able to integrate (*).

(Singular g quite a bit trickier. . . )
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The n+ 1 independent solutions to the differential equation are

Cν(ξ0, ξ1, . . . , ξn) =
∑

i≥0

D(i)ν
τ1τ2...τ(i+1)

ξτ1ξτ2 · · · ξτ(i+1)

(i+ 1)!
fν

i (ξn),

where f is arbitrary, fi is the ith derivative of f , and

D(0)ν
τ := δτ

ν ,

D(1)ν
τ1τ2

:= Aν
τ1τ2

,

D(2)ν
τ1τ2τ3

:= Aµ1
τ1τ2

Aν
µ1τ3

,

...

D(i)ν
τ1τ2...τ(i+1)

:= Aµ1
τ1τ2

Aµ2
µ1τ3

· · ·A
µ(i−1)
µ(i−2)τi

Aν
µ(i−1)τ(i+1)

.

The properties of the coextension imply that the D(i) are

symmetric in all their lower indices.
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CRMHD Casimirs

For CRMHD (n = 3), the Casimirs are

C0 =

∫

Ω

(
ω f0(ψ) −

1

βe
p v f0′(ψ)

)
d2x, C2 =

∫

Ω

p f2(ψ) d2x,

C1 =

∫

Ω

v f1(ψ) d2x, C3 =

∫

Ω

f3(ψ) d2x.

4 arbitrary functions f0–f3 of ξ3 = ψ.

C3 forces the magnetic flux ψ to be tied to the fluid elements, but

not so for v and p. (This would be the case for a pure semidirect

sum.)

Note that would be hard to derive C0 from the equations of

motion, without the bracket.
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Stability

Now that we have developed all this theory for Lie–Poisson

brackets, let’s put it to use. We determine sufficient conditions for

the stability of general systems.

Two methods:

• Energy-Casimir: emphasizes invariants.

• Dynamical Accessibility: uses the bracket directly. Slightly

more general. This is our preferred method.

For simplicity, we will contrast CRMHD with the pure semidirect

sum.
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The Energy-Casimir Method

Requiring that a solution ξe be a constrained minimum of the

Hamiltonian,

δ(H + C)[ξe] =: δF [ξe] = 0,

gives an equilibrium solution. The solutions ξe is then said to be

formally stable if δ2F [ξe] is definite. This is related to δW energy

principles, which extremize the potential energy.

Does not capture equilibria where the bracket is singular.
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Dynamical Accessibility

A slightly more general method for establishing formal stability

uses dynamically accessible variations (DAV), defined as

δξda := {G , ξ} + 1
2 {G , {G , ξ}} ,

with G given in terms of the generating functions χµ by

G :=

∫

Ω

ξµ χµ d2x.

DAV are variations that are constrained to remain on the

symplectic leaves of the system. They preserve the Casimirs to

second order. Stationary solutions of the Hamiltonian,

δHda[ξe] = 0,

capture all possible equilibria of the equations of motion.
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Energy of DAVs

The energy associated with the variations is

δ2Hda[ξe] = 1
2

∫

Ω


δξσ

da

δ2H

δξσ δξτ
δξτ

da −Wλ
µνδξλ

da

[
χµ ,

δH

δξν

]
d2x

In order to determine conditions for stability, we need to write

δ2Hda in terms of the δξλ
da only (no explicit χµ dependence). In

principle, this can always be done.

Positive-definiteness of δ2Hda[ξe] is a sufficient condition for formal

stability.
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Equilibrium Solutions of Semidirect Sum

An equilibrium (ωe, {ξ
µ
e }) of the equations of motion for an SDS

satisfies

ω̇e =
[
δH/δξ0 , ωe

]
+

n∑

ν=1

[ δH/δξν , ξν
e ] = 0,

ξ̇
µ

e =
[
δH/δξ0 , ξµ

e

]
= 0, µ = 1, . . . , n,

where we have labeled the 0th variable by ω. We can satisfy the

ξ̇
µ

e = 0 equations by letting

δH

δξ0
= −Φ(u), ξµ

e = Ξµ(u), µ = 1, . . . , n,

for (so far) arbitrary functions u(x), Φ(u), and Ξµ(u). The ω̇e = 0

condition gives a differential equation for u.
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CRMHD Equilibria

An equilibrium of the CRMHD equations satisfies

ψe = Ψ(u),

φe = Φ(u),

ve = (k1(u) + (k2(u) + 2x) Φ′(u)) /
(
1 − |Φ′(u)|2/βe

)
,

pe = (k1(u) Φ′(u) + βe (k2(u) + 2x)) /
(
1 − |Φ′(u)|2/βe

)
,

ωe Φ′(u) − Je = k3(u) + ve k
′
1(u) + pe k

′
2(u) + βe

−1 pe ve Φ′′(u),

with primes defined by f ′(u) = (dΨ(u)/du)−1 df(u)/du, and u(x),

Ψ(u), Φ(u), and the ki(u) arbitrary functions.

This is very different from the SDS case. In particular, the cocycle

allows the equilibrium “advected” quantities ve and pe to depend

explicitly on x.
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DAVs for Semidirect Sum

The dynamically accessible variations for an SDS are

δωda = [ω , χ0 ] +

n∑

ν=1

[ ξν , χν ],

δξµ
da = [ ξµ , χ0 ], µ = 1, . . . , n.

Notice how all the δξµ
da depend only on χ0: the allowed variations

are tied to the fluid elements.
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DAVs for CRMHD

The dynamically accessible variations for CRMHD are given by

δωda = [ω , χ0 ] + [ v , χ1 ] + [ p , χ2 ] + [ψ , χ3 ],

δvda = [ v , χ0 ] − βe [ψ , χ2 ],

δpda = [ p , χ0 ] − βe [ψ , χ1 ],

δψda = [ψ , χ0 ].

The DAV for ω is the same as for a semidirect sum.

However, the “advected” quantities v, p, and ψ now have

independent variations, which can be specified by χ2, χ1, and χ0,

respectively.
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CRMHD Stability

The terms that involve gradients in the perturbation energy are

δ2Hda =

∫

Ω

(
|∇δφda −∇(Φ′(u) δψda)|

2

+ (1 − |Φ′(u)|2)|∇δψda|
2 + · · ·

)
d2x.

These terms must be positive, so we require

|Φ′(u)| < 1 , ( |∇φe| < |∇ψe| ),

a necessary condition for formal stability.
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The remaining terms are a quadratic form in δvda, δpda, and δψda,

which can be written



1 −βe
−1 Φ′ −k′1 − βe

−1 pe Φ′′

−βe
−1 Φ′ βe

−1 −k′2 − βe
−1 ve Φ′′

−k′1 − βe
−1 pe Φ′′ −k′2 − βe

−1 ve Φ′′ Θ(x, y)




where

Θ(x, y) := −k′3(u) − ve k
′′
1 (u) − pe k

′′
2 (u)

+ ωe Φ′′(u) − βe
−1 pe ve Φ′′′(u) + Φ′(u)∇2Φ′(u).

For positive-definiteness of this quadratic form, we require the

principal minors of this matrix to be positive.
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µ1 = |1| > 0,

µ2 =

∣∣∣∣∣∣
1 −βe

−1 Φ′(u)

−βe
−1 Φ′(u) βe

−1

∣∣∣∣∣∣
= βe

−1

(
1 −

|Φ′(u)|2

βe

)
> 0,

The positive-definiteness of µ2, combined with condition

|Φ′(u)| < 1, implies

|Φ′(u)|2 < min(1, βe)

which is part of a sufficient condition for stability. Thus the cocycle

modifies the stability directly: it always makes the stability

condition worse, because βe > 0.

Finally, if we require that the determinant of the matrix be

positive, we have a sufficient condition for formal stability.
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Conclusions

• Classified Lie–Poisson bracket extensions, and found that for

low orders there are very few independent brackets, with no

free parameters.

• Developed techniques for finding Casimir invariants of

Lie–Poisson brackets (coextension).

• Can use brackets or Casimirs to obtain general criteria for

stability of Lie–Poisson systems.

• Equilibrium solutions for semidirect sum involve advected

quantities that are tied to the fluid elements. Cocycles lead to

richer equilibria (Destabilizing for CRMHD).


