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Chlamydomonas reinhardtii

play movie

[Guasto, J. S., Johnson, K. A., & Gollub, J. P. (2010). Phys. Rev. Lett. 105, 168102]
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http://www.math.wisc.edu/~jeanluc/movies/Guasto2010_start.mp4


Probability density of displacements

Non-Gaussian PDF with ‘exponential’ tails:

[Leptos, K. C., Guasto, J. S., Gollub, J. P., Pesci, A. I., & Goldstein, R. E. (2009).

Phys. Rev. Lett. 103, 198103]
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Probability density of displacements

Leptos et al. (2009) get a reasonable fit of their PDF with the form

P{Xt ∈ [x , x + dx ]} =
1− f√

2πδ2
g

e−x
2/2δ2

g +
f

2δe
e−|x |/δe .

They observe the scalings δg ≈ Agt
1/2 and δe ≈ Aet

1/2, where Ag and Ae

depend on the volume fraction φ.

They call this a diffusive scaling, since Xt/t
1/2 is a scaling variable. Their

point is that this is unusual, since the distribution is not Gaussian.

Commonly observed in diffusive processes that are a combination of
trapped and hopping dynamics (Wang et al., 2012).

The paper by Leptos et al. has attracted considerable interest (140
citations as of June 2015), so it is worth trying to explain in detail.
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Modeling: the interaction sphere

Vswimmer

interaction sphere

Rλ

Model for effective diffusivity:

[Thiffeault, J.-L. & Childress,

S. (2010). Phys. Lett. A, 374,

3487–3490]

[Lin, Z., Thiffeault, J.-L., &

Childress, S. (2011). J. Fluid

Mech. 669, 167–177]

Expected number of ‘dings’ (close interactions) after distance λ:

(number density)× (volume carved out by swimmer) = n λπR2

n is the number density of swimmers.
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Parameters in the Leptos et al. experiment

• Velocity U ∼ 100µm/s;

• Volume fraction is less than 2.2%;

• Organisms of radius 5µm;

• Number density n . 4.2× 10−5 µm−3.

• Maximum observation time in PDFs is t ∼ 0.3 s;

• A typical swimmer moves by a distance λ = Ut ∼ 30µm.
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Close encounters of the first kind

Combining this, we find the expected number of ‘dings’ after time t in the
Leptos et al. experiment:

nλπR2 . 0.4

for the longest observation time, and interaction sphere R = 10µm.

Conclude: a typical fluid particle is only strongly affected by about one
swimmer during the experiment.

The only displacements that a particle feels ‘often’ are the very small ones
due to all the distant swimmers.

We thus expect the displacement PDF to have a central Gaussian core
(since the central limit theorem will apply for the small displacements),
but strongly non-Gaussian tails.
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Strategy for the probability density of displacements

• Find the distribution of displacements for a single swimmer.

• The sum of displacements for many swimmers is the convolution of
single-swimmer displacements.

• In Fourier space (characteristic function), the convolution is a simple
product, but we must then take an inverse transform.

• Usually this inverse transform is approximated using the Central Limit
Theorem, but here we must evaluate it explicitly.

• Care must be taken when going to the infinite-volume limit.

• In the end, we must assume some hydrodynamic model to obtain the
single-swimmer displacements.
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Probability density of displacements for a swimmer

Finite-path drift function ∆λ(η) for a fluid particle, initially at x = η,
affected by a single swimmer:

∆λ(η) =

∫ λ/U

0
u(x(s)−Us)ds, ẋ = u(x−Ut), x(0) = η .

Assuming homogeneity and isotropy, we obtain the probability density of
displacements,

pR1
λ

(r) =
1

Ω rd−1

∫
V
δ(r −∆λ(η))

dVη

V

where Ω = Ω(d) is the area of the unit sphere in d dimensions.

Here R1
λ is a random variable that gives the displacement of the particle

from its initial position after being affected by a single swimmer with path
length λ.
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Variance

The second moment (variance) of R1
λ is

〈(R1
λ)2〉 =

∫
V
r2 pR1

λ
(r) dVr =

∫
V

∆2
λ(η)

dVη

V
.

Let RN
λ be the random particle displacement due to N swimmers;

〈(RN
λ )2〉 = N〈(R1

λ)2〉 = n

∫
V

∆2
λ(η)dVη

with n = N/V the number density of swimmers.

Crucial point:

If the integral grows linearly in λ, then the particle motion is diffusive.
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Two ways to get diffusive behavior

Plot of the integrand:
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Left: support grows linearly with λ (typical of near-field). [Thiffeault &

Childress (2010)]

Right: ‘uncanny scaling’ ∆λ(η) = λ−1D(η/λ) (typical of far-field
stresslet). [Lin et al. (2011); Pushkin & Yeomans (2013)]
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Probability density for x displacement

We integrate over y and z to get the pdf for one coordinate x only:

pX 1
λ

(x) = 1
2

∫
V

1

∆λ(η)
[∆λ(η) > |x |] dVη

V

where [A] is an indicator function: it is 1 if A is satisfied, 0 otherwise.

Now we want pXN
λ

(x), the pdf for N swimmers. The road to this is

through the characteristic function:

〈eikX 1
λ〉 =

∫ ∞
−∞

pX 1
λ

(x) eikx dx =

∫
V

sinc (k∆λ(η))
dVη

V

where sinc x := x−1 sin x .

(In 2D, replace sinc by Bessel function J0(x).)
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Characteristic function

To help integrals converge nicely later, it is better to work with

γ(x) := 1− sinc x .

Then,
〈eikX 1

λ〉 = 1− (vλ/V ) Γλ(k)

where

Γλ(k) :=
1

vλ

∫
V
γ(k∆λ(η))dVη

Here vλ is the volume ‘carved out’ by a swimmer moving a distance λ:

vλ = λσ

with σ the cross-sectional area of the swimmer in the direction of motion.
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Many swimmers

The sum of many displacements has distribution given by a convolution of
individual distributions.

The characteristic function for N swimmers is thus 〈eikXN
λ 〉 = 〈eikX 1

λ〉N :

〈eikX 1
λ〉N = (1− vλΓλ(k)/V )nV

∼ exp (−nvλ Γλ(k)) , V →∞.

where we used N = nV .

Define the number of head-on collisions for path length λ:

νλ := nvλ

We take the inverse Fourier transform of 〈eikX 1
λ〉N to finally obtain

pXλ
(x) =

1

2π

∫ ∞
−∞

exp (−νλ Γλ(k)) e−ikx dk
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A model swimmer

This is as far as we can go without introducing a model swimmer.

We take a squirmer, with axisymmetric streamfunction:

Ψsf(ρ, z) = 1
2ρ

2 U

{
−1 +

`3

(ρ2 + z2)3/2
+ 3

2

β`2z

(ρ2 + z2)3/2

(
`2

ρ2 + z2
− 1

)}
[See for example Lighthill (1952); Blake (1971); Ishikawa et al. (2006); Ishikawa &

Pedley (2007b); Drescher et al. (2009)]

We use the stresslet strength β = 0.5, which is close to a treadmiller:

U
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The function Γλ(k) for the squirmer
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From broadest to narrowest:

λ = 12µm, 36µm, 60µm, and 96µm.
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Comparing to Leptos et al.
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Fit the stresslet strength β = 0.5 to one curve. The only fitted parameter
is the stresslet strength β = 0.5. 17 / 27



Comparing to Eckhardt & Zammert

Eckhardt & Zammert (2012) have a beautiful fit to the data based on a
phenomenological continuous-time random walk model (dashed):
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Our models disagree in the tails, but there is no data there.
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The diffusive scaling from Leptos et al. (2009)

What about the ‘diffusive scaling’ mentioned at the start?

Note the red squares (early times) are on the inside center.
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The diffusive scaling: model

It’s present in our squirmer model as well (no noise, so more peaked):
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(Scaling a bit worse at early times, but this is consistent with experiment.)

20 / 27



The diffusive scaling: longer path lengths

The numerics are relatively easy: we can go for much longer path lengths
than in the experiments. (No real sampling issues, since this is a direct

calculation.)

Scaling gets worse for longer λ, particularly in the tails:
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The diffusive scaling: origin

A straightforward argument shows that for the diffusive scaling to be
approximately satisfied, the Taylor expansion

νλΓλ(k̃/
√
λ)/n = 1

6 k̃
2λ−1

∫
V

∆2
λ(η) dVη + 1

120 k̃
4λ−2

∫
V

∆4
λ(η)dVη + . . .

must be independent of λ. (The first term recovers the Gaussian

approximation — the Central Limit Theorem.)

Hence, we need∫
V

∆2
λ(η)dVη ∼ λ,

∫
V

∆4
λ(η) dVη ∼ λ2, . . .

For the diffusive scaling to persist forever, we would need moment 2q to
scale as q.
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The diffusive scaling is transient
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• Early times: moments are
ballistic (

∫
∆q ∼ λq);

• Late times: moments are linear
(
∫

∆q ∼ λ1);

The slow crossover of
∫

∆4
λ is the origin of the ‘diffusive scaling’ of Leptos et al.,

since in their narrow range of λ the curve is tangent to λ2.
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Time-dependent swimmer
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Sphere-flagellum time-dependent swimmer [Peter Mueller] play movie
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Conclusions

• Leptos et al. (2009) find non-Gaussian distribution of displacements,
with a diffusive scaling.

• Times in Leptos et al. (2009) are so short that the tails are not
determined by asymptotic laws, such as the central limit theorem or
large-deviation theory.

• The Gaussian core arises because of the net effect of the distant
swimmers, far from the test particle.

• The ‘exact’ distribution due to uncorrelated swimmers matches the
data very well, with only one fitted parameter.

• The diffusive scaling is a transient due to slow crossover of the fourth
moment between two regimes.

• Preprint (older version, ask for newer):

http://arxiv.org/abs/1408.4781.
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