Particle fluctuations induced by microswimmers

Jean-Luc Thiffeault

Department of Mathematics University of Wisconsin – Madison

Frontiers in Applied and Computational Math NJIT, Newark, NJ, 5 June 2015

Supported by NSF grant DMS-1109315

play movie

[Guasto, J. S., Johnson, K. A., & Gollub, J. P. (2010). Phys. Rev. Lett. 105, 168102]

Probability density of displacements

W

Non-Gaussian PDF with 'exponential' tails:

[Leptos, K. C., Guasto, J. S., Gollub, J. P., Pesci, A. I., & Goldstein, R. E. (2009). *Phys. Rev. Lett.* **103**, 198103]

W

Leptos et al. (2009) get a reasonable fit of their PDF with the form

$$\mathbb{P}\{X_t \in [x, x + \mathrm{d}x]\} = \frac{1-f}{\sqrt{2\pi\delta_g^2}} \mathrm{e}^{-x^2/2\delta_g^2} + \frac{f}{2\delta_e} \mathrm{e}^{-|x|/\delta_e}.$$

They observe the scalings $\delta_{\rm g} \approx A_{\rm g} t^{1/2}$ and $\delta_{\rm e} \approx A_{\rm e} t^{1/2}$, where $A_{\rm g}$ and $A_{\rm e}$ depend on the volume fraction ϕ .

They call this a diffusive scaling, since $X_t/t^{1/2}$ is a scaling variable. Their point is that this is unusual, since the distribution is not Gaussian.

Commonly observed in diffusive processes that are a combination of trapped and hopping dynamics (Wang *et al.*, 2012).

The paper by Leptos *et al.* has attracted considerable interest (140 citations as of June 2015), so it is worth trying to explain in detail.

Modeling: the interaction sphere

Model for effective diffusivity:

[Thiffeault, J.-L. & Childress, S. (2010). *Phys. Lett. A*, **374**, 3487–3490]

[Lin, Z., Thiffeault, J.-L., & Childress, S. (2011). *J. Fluid Mech.* **669**, 167–177]

Expected number of 'dings' (close interactions) after distance λ :

(number density) × (volume carved out by swimmer) = $n \lambda \pi R^2$

n is the number density of swimmers.

Parameters in the Leptos et al. experiment

- Velocity $U \sim 100 \, \mu {
 m m/s};$
- Volume fraction is less than 2.2%;
- Organisms of radius $5 \,\mu m$;
- Number density $n \lesssim 4.2 \times 10^{-5} \, \mu {
 m m}^{-3}$.
- Maximum observation time in PDFs is $t \sim 0.3$ s;
- A typical swimmer moves by a distance $\lambda = Ut \sim 30 \, \mu {
 m m}.$

Combining this, we find the expected number of 'dings' after time t in the Leptos *et al.* experiment:

$$n\lambda \pi R^2 \lesssim 0.4$$

for the longest observation time, and interaction sphere $R = 10 \, \mu {
m m}.$

Conclude: a typical fluid particle is only strongly affected by about one swimmer during the experiment.

The only displacements that a particle feels 'often' are the very small ones due to all the distant swimmers.

We thus expect the displacement PDF to have a central Gaussian core (since the central limit theorem will apply for the small displacements), but strongly non-Gaussian tails.

- Find the distribution of displacements for a single swimmer.
- The sum of displacements for many swimmers is the convolution of single-swimmer displacements.
- In Fourier space (characteristic function), the convolution is a simple product, but we must then take an inverse transform.
- Usually this inverse transform is approximated using the Central Limit Theorem, but here we must evaluate it explicitly.
- Care must be taken when going to the infinite-volume limit.
- In the end, we must assume some hydrodynamic model to obtain the single-swimmer displacements.

Finite-path drift function $\Delta_{\lambda}(\eta)$ for a fluid particle, initially at $\mathbf{x} = \eta$, affected by a single swimmer:

$$oldsymbol{\Delta}_{\lambda}(oldsymbol{\eta}) = \int_{0}^{\lambda/U} \mathsf{u}(\mathsf{x}(s) - \mathsf{U}s) \, \mathrm{d}s, \qquad \dot{\mathsf{x}} = \mathsf{u}(\mathsf{x} - \mathsf{U}t), \quad \mathsf{x}(0) = oldsymbol{\eta} \, .$$

Assuming homogeneity and isotropy, we obtain the probability density of displacements,

$$p_{\mathbf{R}^{1}_{\lambda}}(\mathbf{r}) = \frac{1}{\Omega r^{d-1}} \int_{V} \delta(r - \Delta_{\lambda}(\boldsymbol{\eta})) \frac{\mathrm{d}V_{\boldsymbol{\eta}}}{V}$$

where $\Omega = \Omega(d)$ is the area of the unit sphere in d dimensions.

Here \mathbf{R}^{1}_{λ} is a random variable that gives the displacement of the particle from its initial position after being affected by a single swimmer with path length λ .

The second moment (variance) of \mathbf{R}^1_{λ} is

$$\langle (R^1_\lambda)^2 \rangle = \int_V r^2 p_{\mathbf{R}^1_\lambda}(\mathbf{r}) \, \mathrm{d} V_{\mathbf{r}} = \int_V \Delta^2_\lambda(\boldsymbol{\eta}) \, \frac{\mathrm{d} V_{\boldsymbol{\eta}}}{V}.$$

Let \mathbf{R}_{λ}^{N} be the random particle displacement due to N swimmers;

$$\langle (R_{\lambda}^{N})^{2} \rangle = N \langle (R_{\lambda}^{1})^{2} \rangle = n \int_{V} \Delta_{\lambda}^{2}(\eta) \, \mathrm{d}V_{\eta}$$

with n = N/V the number density of swimmers.

Crucial point:

If the integral grows linearly in λ , then the particle motion is diffusive.

Plot of the integrand:

Left: support grows linearly with λ (typical of near-field). [Thiffeault & Childress (2010)]

Right: 'uncanny scaling' $\Delta_{\lambda}(\eta) = \lambda^{-1}D(\eta/\lambda)$ (typical of far-field stresslet). [Lin *et al.* (2011); Pushkin & Yeomans (2013)]

We integrate over y and z to get the pdf for one coordinate x only:

$$p_{X^1_\lambda}(x) = rac{1}{2} \int_V rac{1}{\Delta_\lambda(\eta)} \left[\Delta_\lambda(\eta) > |x|
ight] rac{\mathrm{d} V_\eta}{V}.$$

where [A] is an indicator function: it is 1 if A is satisfied, 0 otherwise.

Now we want $p_{X_{\lambda}^{N}}(x)$, the pdf for *N* swimmers. The road to this is through the characteristic function:

$$\langle \mathrm{e}^{\mathrm{i}kX_{\lambda}^{1}} \rangle = \int_{-\infty}^{\infty} p_{X_{\lambda}^{1}}(x) \, \mathrm{e}^{\mathrm{i}kx} \, \mathrm{d}x = \int_{V} \mathrm{sinc} \left(k \Delta_{\lambda}(\boldsymbol{\eta}) \right) \frac{\mathrm{d}V_{\boldsymbol{\eta}}}{V}$$

where sinc $x := x^{-1} \sin x$.

(In 2D, replace sinc by Bessel function $J_0(x)$.)

W

To help integrals converge nicely later, it is better to work with

$$\gamma(x) \coloneqq 1 - \operatorname{sinc} x.$$

Then,

$$\langle \mathrm{e}^{\mathrm{i}kX_{\lambda}^{1}}
angle = 1 - (v_{\lambda}/V)\,\mathsf{\Gamma}_{\lambda}(k)$$

where

$${\sf \Gamma}_\lambda(k)\coloneqq rac{1}{v_\lambda}\int_V \gamma(k\Delta_\lambda(oldsymbol\eta)\,{
m d} V_{oldsymbol\eta}$$

Here v_{λ} is the volume 'carved out' by a swimmer moving a distance λ :

$$v_{\lambda} = \lambda \sigma$$

with σ the cross-sectional area of the swimmer in the direction of motion.

Many swimmers

W

The sum of many displacements has distribution given by a convolution of individual distributions.

The characteristic function for N swimmers is thus $\langle e^{ikX_{\lambda}^{N}} \rangle = \langle e^{ikX_{\lambda}^{1}} \rangle^{N}$:

$$egin{aligned} &\langle \mathrm{e}^{\mathrm{i}kX_\lambda^1}
angle^{\mathcal{N}} &= (1 - v_\lambda \Gamma_\lambda(k)/V)^{nV} \ &\sim \exp\left(-nv_\lambda \Gamma_\lambda(k)
ight), \quad V o \infty. \end{aligned}$$

where we used N = nV.

Define the number of head-on collisions for path length λ :

 $\nu_{\lambda} := n v_{\lambda}$

We take the inverse Fourier transform of $\langle e^{ikX_{\lambda}^{1}} \rangle^{N}$ to finally obtain

$$p_{X_{\lambda}}(x) = rac{1}{2\pi} \int_{-\infty}^{\infty} \exp\left(-\nu_{\lambda} \, \mathsf{\Gamma}_{\lambda}(k)
ight) \mathrm{e}^{-\mathrm{i}kx} \, \mathrm{d}k$$

A model swimmer

This is as far as we can go without introducing a model swimmer.

We take a squirmer, with axisymmetric streamfunction:

$$\Psi_{\rm sf}(\rho,z) = \frac{1}{2}\rho^2 U\left\{-1 + \frac{\ell^3}{(\rho^2 + z^2)^{3/2}} + \frac{3}{2}\frac{\beta\ell^2 z}{(\rho^2 + z^2)^{3/2}} \left(\frac{\ell^2}{\rho^2 + z^2} - 1\right)\right\}$$

[See for example Lighthill (1952); Blake (1971); Ishikawa *et al.* (2006); Ishikawa & Pedley (2007b); Drescher *et al.* (2009)]

We use the stresslet strength $\beta = 0.5$, which is close to a treadmiller:

The function $\Gamma_{\lambda}(k)$ for the squirmer

From broadest to narrowest:

 $\lambda=12\,\mu{\rm m}$, 36 $\mu{\rm m}$, 60 $\mu{\rm m}$, and 96 $\mu{\rm m}.$

16 / 27

Comparing to Leptos et al.

Fit the stresslet strength $\beta = 0.5$ to one curve. The only fitted parameter is the stresslet strength $\beta = 0.5$.

Comparing to Eckhardt & Zammert

Ŵ

Eckhardt & Zammert (2012) have a beautiful fit to the data based on a phenomenological continuous-time random walk model (dashed):

Our models disagree in the tails, but there is no data there.

What about the 'diffusive scaling' mentioned at the start?

Note the red squares (early times) are on the inside center.

It's present in our squirmer model as well (no noise, so more peaked):

(Scaling a bit worse at early times, but this is consistent with experiment.)

The diffusive scaling: longer path lengths

The numerics are relatively easy: we can go for much longer path lengths than in the experiments. (No real sampling issues, since this is a direct calculation.)

Scaling gets worse for longer λ , particularly in the tails:

A straightforward argument shows that for the diffusive scaling to be approximately satisfied, the Taylor expansion

$$\nu_{\lambda} \Gamma_{\lambda}(\tilde{k}/\sqrt{\lambda})/n = \frac{1}{6} \, \tilde{k}^{2} \lambda^{-1} \int_{V} \Delta_{\lambda}^{2}(\boldsymbol{\eta}) \, \mathrm{d}V_{\boldsymbol{\eta}} + \frac{1}{120} \, \tilde{k}^{4} \lambda^{-2} \int_{V} \Delta_{\lambda}^{4}(\boldsymbol{\eta}) \, \mathrm{d}V_{\boldsymbol{\eta}} + \dots$$

must be independent of λ . (The first term recovers the Gaussian approximation — the Central Limit Theorem.)

Hence, we need

$$\int_{V} \Delta_{\lambda}^{2}(\boldsymbol{\eta}) \, \mathrm{d}V_{\boldsymbol{\eta}} \sim \lambda, \qquad \int_{V} \Delta_{\lambda}^{4}(\boldsymbol{\eta}) \, \mathrm{d}V_{\boldsymbol{\eta}} \sim \lambda^{2}, \qquad \dots$$

For the diffusive scaling to persist forever, we would need moment 2q to scale as q.

The diffusive scaling is transient

- Early times: moments are ballistic (∫ Δ^q ~ λ^q);
- Late times: moments are linear $(\int \Delta^q \sim \lambda^1);$

The slow crossover of $\int \Delta_{\lambda}^4$ is the origin of the 'diffusive scaling' of Leptos *et al.*, since in their narrow range of λ the curve is tangent to λ^2 .

Time-dependent swimmer

Sphere-flagellum time-dependent swimmer [Peter Mueller] play movie

- Leptos *et al.* (2009) find non-Gaussian distribution of displacements, with a diffusive scaling.
- Times in Leptos *et al.* (2009) are so short that the tails are not determined by asymptotic laws, such as the central limit theorem or large-deviation theory.
- The Gaussian core arises because of the net effect of the distant swimmers, far from the test particle.
- The 'exact' distribution due to uncorrelated swimmers matches the data very well, with only one fitted parameter.
- The diffusive scaling is a transient due to slow crossover of the fourth moment between two regimes.
- Preprint (older version, ask for newer): http://arxiv.org/abs/1408.4781.

References I

- Blake, J. R. (1971). J. Fluid Mech. 46, 199-208.
- Darwin, C. G. (1953). Proc. Camb. Phil. Soc. 49 (2), 342-354.
- Dombrowski, C., Cisneros, L., Chatkaew, S., Goldstein, R. E., & Kessler, J. O. (2004). Phys. Rev. Lett. 93 (9), 098103.
- Drescher, K., Leptos, K., Tuval, I., Ishikawa, T., Pedley, T. J., & Goldstein, R. E. (2009). Phys. Rev. Lett. 102, 168101.
- Drescher, K. D., Goldstein, R. E., Michel, N., Polin, M., & Tuval, I. (2010). Phys. Rev. Lett. 105, 168101.
- Dunkel, J., Putz, V. B., Zaid, I. M., & Yeomans, J. M. (2010). Soft Matter, 6, 4268-4276.
- Eames, I., Belcher, S. E., & Hunt, J. C. R. (1994). J. Fluid Mech. 275, 201-223.
- Eckhardt, B. & Zammert, S. (2012). Eur. Phys. J. E, 35, 96.
- Guasto, J. S., Johnson, K. A., & Gollub, J. P. (2010). Phys. Rev. Lett. 105, 168102.
- Hernandez-Ortiz, J. P., Dtolz, C. G., & Graham, M. D. (2005). Phys. Rev. Lett. 95, 204501.
- Ishikawa, T. (2009). J. Roy. Soc. Interface, 6, 815-834.
- Ishikawa, T. & Pedley, T. J. (2007a). J. Fluid Mech. 588, 399-435.
- Ishikawa, T. & Pedley, T. J. (2007b). J. Fluid Mech. 588, 437-462.
- Ishikawa, T., Simmonds, M. P., & Pedley, T. J. (2006). J. Fluid Mech. 568, 119–160.

References II

- Leptos, K. C., Guasto, J. S., Gollub, J. P., Pesci, A. I., & Goldstein, R. E. (2009). *Phys. Rev. Lett.* **103**, 198103.
- Lighthill, M. J. (1952). Comm. Pure Appl. Math. 5, 109-118.
- Lin, Z., Thiffeault, J.-L., & Childress, S. (2011). J. Fluid Mech. 669, 167-177.
- Maxwell, J. C. (1869). Proc. London Math. Soc. s1-3 (1), 82-87.
- Oseen, C. W. (1910). Ark. Mat. Astr. Fys. 6 (29), 1-20.
- Pushkin, D. O. & Yeomans, J. M. (2013). Phys. Rev. Lett. 111, 188101.
- Pushkin, D. O. & Yeomans, J. M. (2014). J. Stat. Mech.: Theory Exp. 2014, P04030.
- Saintillan, D. & Shelley, M. J. (2007). Phys. Rev. Lett. 99, 058102.
- Thiffeault, J.-L. & Childress, S. (2010). Phys. Lett. A, 374, 3487-3490.
- Underhill, P. T., Hernandez-Ortiz, J. P., & Graham, M. D. (2008). *Phys. Rev. Lett.* 100, 248101.
- Wang, B., Kuo, J., Bae, S. C., & Granick, S. (2012). Nature Materials, 11, 481-485.
- Wu, X.-L. & Libchaber, A. (2000). Phys. Rev. Lett. 84, 3017-3020.
- Yeomans, J. M., Pushkin, D. O., & Shum, H. (2014). Eur. Phys. J. Special Topics, 223 (9), 1771–1785.
- Zaid, I. M., Dunkel, J., & Yeomans, J. M. (2011). J. Roy. Soc. Interface, 8, 1314-1331.