Chaotic Advection in Thin Films?

Jean-Luc Thiffeault and Khalid Kamhawi

Department of Mathematics Imperial College London

FACM, NJIT, 16 May 2006

Introduction

- A thin layer of fluid flowing down an inclined substrate.
- Reduce to two-dimensional problem by asymptotic expansion:
 PDE for the height field.
- But the velocity field is still three-dimensional, with a nontrivial vertical component.
- Steady three-dimensional flows can exhibit chaotic trajectories.
- This leads to fluid particles rapidly decorrelating: good for mixing.
- Can suitable substrate shapes lead to good horizontal mixing?

Strategy

- Thin-layer expansion in the direction normal to the substrate.
- Similar derivation to [Roy, Roberts, and Simpson, JFM 454, 235 (2002)].
- For simplicity, assume steady flow.
- Use non-orthogonal coordinates, since globally orthogonal coordinates do not usually exist.
- Correct velocity field to satisfy kinematic constraints this is crucial for particle advection.
- Integrate trajectories and make Poincaré sections in a spatially periodic domain.

Introduction

Aside: Inviscid Theory

Inertia is great for chaos...

... but particle trajectories (characteristics) cross all over the place. Fix as Sam Howison did yesterday?

Coordinate System

Coordinate Vectors in the Bulk

Vectors corresponding to coordinates in the fluid:

$$\tilde{\mathbf{e}}_{\alpha} = \partial_{\alpha} \mathbf{r} = \mathbf{e}_{\alpha} - y \, \mathbb{K}_{\alpha}{}^{\beta} \, \mathbf{e}_{\beta} \,, \qquad \tilde{\mathbf{e}}_{3} = \mathbf{e}_{3} = \hat{\mathbf{e}}_{3} = \frac{\partial \mathbf{r}}{\partial y} \,,$$

- Summation of repeated indices;
- Greek indices always take the value 1 or 2 (never 3);
- Roman indices always take the value 1, 2, or 3;
- Tilde quantities are evaluated in the 'bulk' (away from the substrate), and thus depend on y.

Curvature tensor $\mathbb{K}_{\alpha}{}^{\beta}$ defined by

$$\partial_{\alpha}\hat{\mathbf{e}}_{3} = -\mathbb{K}_{\alpha}{}^{\beta}\,\mathbf{e}_{\beta}\,,$$

Note that the \mathbf{e}_{α} are not necessarily orthogonal or normalised.

Metric Tensor

To express the length of vectors in the (x^1, x^2, y) coordinates, we need the metric tensor $\tilde{\mathfrak{g}}_{\alpha\beta}$

$$ilde{\mathfrak{g}}_{ij} = ilde{\mathbf{e}}_i \cdot ilde{\mathbf{e}}_j = egin{pmatrix} \widetilde{\mathbb{G}}_{lphaeta} & 0 \ 0 & 1 \end{pmatrix}$$

where

$$\begin{split} \widetilde{\mathbb{G}}_{\alpha\beta} &:= \tilde{\mathbf{e}}_{\alpha} \cdot \tilde{\mathbf{e}}_{\beta} = \mathbb{G}_{\alpha\beta} - 2y \, \mathbb{K}_{\alpha\beta} + y^2 \, \mathbb{K}_{\alpha}{}^{\gamma} \, \mathbb{K}_{\gamma\beta} \,, \\ \mathbb{G}_{\alpha\beta} &:= \mathbf{e}_{\alpha} \cdot \mathbf{e}_{\beta} \,. \end{split}$$

The full metric $\widetilde{\mathfrak{g}}_{ij}$ is block-diagonal. The 2×2 metric $\mathbb{G}_{\alpha\beta}$ is the surface metric, and $\widetilde{\mathbb{G}}_{\alpha\beta}$ is its extension into the bulk of the fluid. We have used the surface metric to lower an index on \mathbb{K} :

$$\mathbb{K}_{\alpha\beta} = \mathbb{G}_{\alpha\gamma}\mathbb{K}_{\beta}{}^{\gamma}$$

The Dilatation of the Coordinates

A crucial quantity is the determinant of the metric,

$$\tilde{w} = \left(\det \widetilde{\mathbb{G}}_{\alpha\beta}\right)^{1/2} = \tilde{\omega} w, \qquad w = \left(\det \mathbb{G}_{\alpha\beta}\right)^{1/2},$$

where

$$\tilde{\omega} = 1 - \kappa \, \mathbf{y} + \mathcal{G} \, \mathbf{y}^2 \,,$$

and

$$\kappa = \mathbb{K}_{\alpha}^{\alpha}$$
 mean curvature; $g = \det \mathbb{K}_{\alpha}^{\beta}$ Gaussian curvature.

The volume element is given by by $\tilde{\omega} w dx^1 dx^2 dy$. If $\tilde{\omega}$ becomes negative, then substrate normals cross within the fluid and the coordinate system becomes invalid. OK as long as

$$0 \le y < \{\max(k_1, k_2, 0^+)\}^{-1}, \qquad k_{1,2} := \frac{1}{2} (\kappa \pm \sqrt{\kappa^2 - 4g}),$$

where k_1 and k_2 are the principal curvatures.

Notation

There are three types of quantities in our development:

- 1. Quantities with a **tilde** (e.g., $\tilde{\mathbf{e}}_{\alpha}$ and \tilde{w}) are evaluated between the substrate and the free surface and are functions of (x^1, x^2, y) .
- 2. Quantities with an **overbar** (e.g., $\bar{\mathbf{e}}_{\alpha}$ and \bar{w}) are evaluated on the free surface $y = \eta(x^1, x^2)$ and are functions of (x^1, x^2) .
- 3. **'Bare-headed'** quantities (e.g., \mathbf{e}_{α} and w) are evaluated on the substrate y=0 and are functions of (x^1,x^2) , or they are quantities that do not depend on y at all (e.g., $\hat{\mathbf{e}}_3$).

Mass Conservation

We introduce a steady velocity field

$$\mathbf{u} = \tilde{\mathbf{u}}^{\alpha} \, \tilde{\mathbf{e}}_{\alpha} + \tilde{\mathbf{v}} \, \hat{\mathbf{e}}_{3} \,.$$

Mass conservation is imposed via the divergence-free condition, $\nabla \cdot \mathbf{u} = 0$; in terms of our coordinates,

$$\partial_{lpha}\left(ilde{w}\, ilde{u}^{lpha}
ight)+rac{\partial}{\partial y}\left(ilde{w}\, ilde{v}
ight)=0\,.$$

We integrate this from 0 to η and use the no-throughflow condition $\tilde{v}(x^1,x^2)=0$ to get

$$\bar{w}\,\bar{v} = -\int_0^{\eta} \partial_{\alpha} \left(\tilde{w}\,\tilde{u}^{\alpha}\right) \,\mathrm{d}y = \bar{w}\,\bar{u}^{\alpha}\partial_{\alpha}\eta - \partial_{\alpha}\int_0^{\eta} \left(\tilde{w}\,\tilde{u}^{\alpha}\right) \,\mathrm{d}y.$$

Mass Conservation (cont'd)

Now we use the kinematic boundary condition at the top surface,

$$\bar{u}^{\alpha} \partial_{\alpha} \eta = \bar{v},$$

to find

$$\partial_{\alpha} (w \, \bar{q}^{\alpha}) = 0,$$

where the flux vector is

$$ilde{q}^{lpha}(x^1,x^2,y)\coloneqq\int_0^y ilde{\omega}\ ilde{u}^{lpha}dy\,,\qquad ar{q}^{lpha}(x^1,x^2)=ar{q}^{lpha}(x^1,x^2,\eta).$$

If we divide through by w, we recognise the covariant divergence,

$$\nabla_{\alpha} \bar{q}^{\alpha} = 0.$$

Note that there are no assumptions on the thinness of the layer: everything is exact.

Dynamical Equations

We now assume **u** satisfies the Stokes equation.

$$\Delta \mathbf{u} = \nabla \rho - \hat{\mathbf{g}},$$

where p is the pressure and $\hat{\mathbf{g}}$ is a unit vector in the direction of gravity. The velocity satisfies the boundary conditions

$$\begin{array}{ll} \mathbf{u}=0 & \text{at } y=0 & \text{no-slip at substrate} \\ \mathbf{t}_{\alpha}\cdot\boldsymbol{\tau}\cdot\hat{\mathbf{n}}=0 & \text{at } y=\eta & \text{tangential stresses at free surface} \\ -p+\hat{\mathbf{n}}\cdot\boldsymbol{\tau}\cdot\hat{\mathbf{n}}=\sigma\kappa_{\mathrm{surf}} & \text{at } y=\eta & \text{normal stress at free surface} \end{array}$$

where

$$\tau \coloneqq \nabla \mathbf{u} + (\nabla \mathbf{u})^T$$

is the deviatoric stress, $\hat{\bf n}$ is the unit normal to the surface, ${\bf t}_{\alpha}$ are tangents to the surface, and $\kappa_{\rm surf}$ is the mean curvature of the surface. All quantities are dimensionless.

Small-parameter Rescaling

The time has come to make the layer thin: we do this by assuming that horizontal scales vary slowly:

$$\mathbf{x}^{\alpha} = \varepsilon^{-1} \mathbf{x}^{\alpha*}, \quad \tilde{\mathbf{v}} = \varepsilon \, \tilde{\mathbf{v}}^*, \quad \mathbf{p} = \varepsilon^{-1} \, \mathbf{p}^*, \quad \sigma = \varepsilon^{-2} \, \sigma^*.$$

Everything else is of order unity, including vertical scales. We immediately drop the * superscripts, and expand the fields as

$$\tilde{u}^{\alpha} = \tilde{u}^{\alpha}_{(0)} + \varepsilon \, \tilde{u}^{\alpha}_{(1)} + \dots,$$

$$\tilde{p} = \tilde{p}_{(0)} + \varepsilon \, \tilde{p}_{(1)} + \dots$$

Note that we leave \tilde{v} unexpanded (more on this later).

Order ε^0

At order ε^0 , the velocity field and pressure satisfy

$$\frac{\partial^2 \tilde{u}_{(0)}^{\alpha}}{\partial y^2} = \partial^{\alpha} \tilde{p}_{(0)} - \hat{g}_{s}^{\alpha}, \qquad \frac{\partial \tilde{p}_{(0)}}{\partial y} = 0,$$

where $\partial^{\alpha} = \mathbb{G}^{\alpha\beta} \partial_{\beta}$. These are readily integrated to give

$$\tilde{u}_{(0)}^{\alpha} = -\frac{1}{2} \left(\hat{g}_{s}^{\alpha} + \sigma \, \partial^{\alpha} \kappa \right) \, y(y - 2\eta), \qquad \tilde{p}_{(0)} = -\sigma \kappa,$$

where the boundary conditions have been applied.

Order ε^1

At order ε ,

$$\frac{\partial^{2} \tilde{u}_{(1)}^{\alpha}}{\partial y^{2}} = \left(\kappa \delta_{\beta}^{\alpha} + 2 \mathbb{K}_{\beta}^{\alpha}\right) \frac{\partial \tilde{u}_{(0)}^{\beta}}{\partial y} + \partial^{\alpha} \tilde{p}_{(1)} + 2y \mathbb{K}_{\beta}^{\alpha} \partial^{\beta} \tilde{p}_{(0)} - y \, \hat{g}_{s}^{\beta} \, \mathbb{K}_{\beta}^{\alpha},$$

with solution

$$\tilde{u}_{(1)}^{\alpha} = A_{(1)}^{\alpha} y (y - 2\eta) + B_{(1)}^{\alpha} y (y^2 - 3\eta^2)$$

where the coefficients $A_{(1)}^{\alpha}$ and $B_{(1)}^{\alpha}$ involve the substrate curvature tensor and gradients of the mean curvature.

In fact, the ε^0 solution can be incorporated to the coefficient A, to give

$$\tilde{u}^{\alpha} = A^{\alpha}y(y-2\eta) + B^{\alpha}y(y^2-3\eta^2).$$

The Mass Flux

The horizontal velocity field is sufficient to find the mass flux,

$$egin{aligned} ar{q}^{lpha} &= \int_{0}^{\eta} \tilde{\omega} \ ar{u}^{lpha} dy = \int_{0}^{\eta} (1 - \varepsilon \, \kappa \, y) ar{u}^{lpha} \, dy + \mathfrak{O} ig(\varepsilon^{2} ig) \,, \ &= ar{q}_{
m grav}^{lpha} + ar{q}_{
m surf}^{lpha} \,, \end{aligned}$$

$$\begin{split} \bar{q}_{\mathrm{grav}}^{\alpha} &= \tfrac{1}{3} \eta^3 \left\{ \hat{g}_{\mathrm{s}}^{\alpha} - \varepsilon \, \hat{g}_{\mathrm{s}}^{\beta} \left(\kappa \, \delta_{\beta}{}^{\alpha} + \tfrac{1}{2} \, \mathbb{K}_{\beta}{}^{\alpha} \right) \eta + \varepsilon \, \hat{g}_{y} \, \partial^{\alpha} \eta \right\} \\ &+ \varepsilon^2 \tfrac{1}{120} \, \eta^4 \kappa \, \{ \eta \, \hat{g}_{\mathrm{s}}^{\beta} \left(9 \kappa \, \delta_{\beta}{}^{\alpha} + 11 \, \mathbb{K}_{\beta}{}^{\alpha} \right) - 25 \, \hat{g}_{y} \, \partial^{\alpha} \eta \} + \mathcal{O} \big(\varepsilon^2 \big), \end{split}$$

$$\begin{split} & \bar{q}_{\rm surf}^{\alpha} = \tfrac{1}{3} \sigma \eta^3 \left\{ \partial^{\alpha} \kappa_{\rm surf} - \varepsilon \, \eta \, \kappa \, \partial^{\alpha} \kappa + \tfrac{1}{2} \varepsilon \, \eta \, \mathbb{K}_{\beta}^{\ \alpha} \, \partial^{\beta} \kappa \right\} \\ & + \varepsilon^2 \tfrac{1}{120} \, \sigma \, \eta^4 \kappa \, \{ 9 \eta \, \kappa \, \partial^{\alpha} \kappa - 14 \, \eta \mathbb{K}_{\beta}^{\ \alpha} \partial^{\beta} \kappa - 25 \, \partial^{\alpha} (\kappa_2 \eta + \Delta \eta) \} + \mathcal{O} \big(\varepsilon^2 \big), \end{split}$$

Note that we've kept some second-order terms but not others. The above fluxes are only asymptotic to order ε^1 , but they preserve the free-surface kinematic BC to all orders...

The Vertical Velocity

The vertical velocity is obtained from mass conservation:

$$ilde{v} = -rac{1}{1-arepsilon\kappa y}\int_0^y \partial_lpha \left(\left(1-arepsilon\kappa y
ight) ilde{u}^lpha
ight) \, dy \,, \quad ext{not expanded in } arepsilon.$$

Mass conservation follows from using this form for \tilde{v} , and the free-surface kinematic boundary condition is satisfied exactly if the second-order terms are included in the flux.

The exact kinematic constraints are crucial for particle advection:

- Mass preservation prevents the existence of attractors in the flow where particles bunch up.
- The kinematic boundary condition prevents particles escaping from the top surface of the flow.

These are only exact to the extent that $\nabla_{\alpha} \bar{q}^{\alpha} = 0$ is satisfied numerically, but this is a much smaller error than ε^2 .

The Shape of the Substrate

The shape of the bottom substrate is given by the vector $\mathbf{X}(x^1, x^2)$. The generality of the formulation allows us to choose (x^1, x^2) as cylindrical (or any other) coordinates, which could be used to describe a 'bumpy fibre.' However, we stick to Cartesian and write

$$\mathbf{X}(x^1, x^2) = (x^1 \ x^2 \ f(x^1, x^2))^T,$$

which rules out a multivalued substrate (no overhangs). $f(x^1, x^2)$ gives the vertical height of the substrate at (x^1, x^2) .

We assume the substrate is periodic in both directions.

The flow is driven by the tilt θ of the gravity vector with respect to the substrate:

$$\hat{\mathbf{g}} = (\sin\theta\cos\phi \quad \sin\theta\sin\phi \quad -\cos\theta)^T$$

Numerical Solution

We now solve $\nabla_{\alpha} \bar{q}^{\alpha} = 0$ for the height field $\eta(x^1, x^2)$. The pictures below are for

$$f(x^1, x^2) = f_0 \sin(2\pi x^1) \sin(2\pi x^2).$$

Parameters: $f_0=0.05$, $\varepsilon=0.06$, $\theta=0.1$, $\phi=0$, $\sigma=0$.

Numerical Error in Kinematic BC

For a numerical resolution of 100×100 .

	Uncorrected	Corrected
Kinematic BC error	4×10^{-4}	2×10^{-9}
Incompressibility error	$4 imes 10^{-3}$	9×10^{-7}

The factor of 10^4 – 10^5 improvement makes a huge difference when doing particle advection: it means that particles can skirt the surface without escaping.

A Typical Trajectory

- The particle explores the top and bottom of the layer.
- It is confined in a narrow region in x^2 .

Poincaré Section

Breaking the Symmetry

$$f(x^{1}, x^{2}) = f_{0} \left\{ \sin(2\pi x^{1}) \sin(2\pi x^{2}) + \delta \sin(4\pi x^{2}) \right\}, \quad \delta = 0.2$$

- Two types of trajectories: straight and diagonal.
- Explore a wide range in x^2 .
- The diagonal trajectories are chaotic: 'jump' between channels.

Chaotic Poincaré Section

The mixed regular-chaotic phase space is evident in the section:

Conclusions

- Relate substrate properties (curvature tensor) to chaotic features.
- Applications? Coating flows?
- Experiments
- Time-dependence: induce chaotic mixing by vibrating the substrate or sending waves through it.
- Effect of surfactants, surface tension, Marangoni stresses...