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Introduction

• A thin layer of fluid flowing down an inclined substrate.

• Reduce to two-dimensional problem by asymptotic expansion:
PDE for the height field.

• But the velocity field is still three-dimensional, with a
nontrivial vertical component.

• Steady three-dimensional flows can exhibit chaotic trajectories.

• This leads to fluid particles rapidly decorrelating: good for
mixing.

• Can suitable substrate shapes lead to good horizontal mixing?
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Strategy

• Thin-layer expansion in the direction normal to the substrate.

• Similar derivation to [Roy, Roberts, and Simpson, JFM 454, 235

(2002)].

• For simplicity, assume steady flow.

• Use non-orthogonal coordinates, since globally orthogonal
coordinates do not usually exist.

• Correct velocity field to satisfy kinematic constraints — this is
crucial for particle advection.

• Integrate trajectories and make Poincaré sections in a spatially
periodic domain.
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Aside: Inviscid Theory

Inertia is great for chaos. . .

. . . but particle trajectories (characteristics) cross all over the place.
Fix as Sam Howison did yesterday?
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Coordinate System

Surface y = η(x1, x2)

Substrate y = 0

at position X(x1, x2)

r(x1, x2, y) = X(x1, x2) + y ê3(x
1, x2)

eα =
∂X

∂xα
= ∂αX ; ê3 = (e1 × e2)/ ‖e1 × e2‖
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Coordinate Vectors in the Bulk

Vectors corresponding to coordinates in the fluid:

ẽα = ∂αr = eα − y Kα
β eβ , ẽ3 = e3 = ê3 =

∂r

∂y
,

• Summation of repeated indices;

• Greek indices always take the value 1 or 2 (never 3);

• Roman indices always take the value 1, 2, or 3;

• Tilde quantities are evaluated in the ‘bulk’ (away from the
substrate), and thus depend on y .

Curvature tensor Kα
β defined by

∂αê3 = −Kα
β eβ ,

Note that the eα are not necessarily orthogonal or normalised.
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Metric Tensor
To express the length of vectors in the (x1, x2, y) coordinates, we
need the metric tensor g̃αβ

g̃ij = ẽi · ẽj =

(
G̃αβ 0
0 1

)
where

G̃αβ := ẽα · ẽβ = Gαβ − 2y Kαβ + y2 Kα
γ Kγβ ,

Gαβ := eα · eβ .

The full metric g̃ij is block-diagonal. The 2× 2 metric Gαβ is the

surface metric, and G̃αβ is its extension into the bulk of the fluid.
We have used the surface metric to lower an index on K:

Kαβ = GαγKβ
γ
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The Dilatation of the Coordinates
A crucial quantity is the determinant of the metric,

w̃ =
(
det G̃αβ

)1/2
= ω̃ w , w =

(
det Gαβ

)1/2
,

where
ω̃ = 1− κ y + G y2 ,

and

κ = Kα
α mean curvature;

G = det Kα
β Gaussian curvature .

The volume element is given by by ω̃ w dx1dx2dy .
If ω̃ becomes negative, then substrate normals cross within the
fluid and the coordinate system becomes invalid. OK as long as

0 ≤ y < {max(k1, k2, 0
+)}−1 , k1,2 := 1

2

(
κ±

√
κ2 − 4G

)
,

where k1 and k2 are the principal curvatures.
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Notation

There are three types of quantities in our development:

1. Quantities with a tilde (e.g., ẽα and w̃) are evaluated
between the substrate and the free surface and are functions
of (x1, x2, y).

2. Quantities with an overbar (e.g., ēα and w̄) are evaluated on
the free surface y = η(x1, x2) and are functions of (x1, x2).

3. ‘Bare-headed’ quantities (e.g., eα and w) are evaluated on
the substrate y = 0 and are functions of (x1, x2), or they are
quantities that do not depend on y at all (e.g., ê3).
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Mass Conservation

We introduce a steady velocity field

u = ũα ẽα + ṽ ê3 .

Mass conservation is imposed via the divergence-free
condition, ∇ · u = 0; in terms of our coordinates,

∂α (w̃ ũα) +
∂

∂y
(w̃ ṽ) = 0 .

We integrate this from 0 to η and use the no-throughflow
condition ṽ(x1, x2) = 0 to get

w̄ v̄ = −
∫ η

0
∂α (w̃ ũα) dy = w̄ ūα∂αη − ∂α

∫ η

0
(w̃ ũα) dy .
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Mass Conservation (cont’d)

Now we use the kinematic boundary condition at the top surface,

ūα ∂αη = v̄ ,

to find
∂α (w q̄α) = 0,

where the flux vector is

q̃α(x1, x2, y) :=

∫ y

0
ω̃ ũαdy , q̄α(x1, x2) = q̃α(x1, x2, η).

If we divide through by w , we recognise the covariant divergence,

∇αq̄α = 0.

Note that there are no assumptions on the thinness of the layer:
everything is exact.
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Dynamical Equations

We now assume u satisfies the Stokes equation,

∆u = ∇p − ĝ,

where p is the pressure and ĝ is a unit vector in the direction of
gravity. The velocity satisfies the boundary conditions

u = 0 at y = 0 no-slip at substrate

tα · τ · n̂ = 0 at y = η tangential stresses at free surface

−p + n̂ · τ · n̂ = σκsurf at y = η normal stress at free surface

where
τ := ∇u + (∇u)T

is the deviatoric stress, n̂ is the unit normal to the surface, tα are
tangents to the surface, and κsurf is the mean curvature of the
surface. All quantities are dimensionless.
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Small-parameter Rescaling

The time has come to make the layer thin: we do this by assuming
that horizontal scales vary slowly:

xα = ε−1 xα∗, ṽ = ε ṽ∗, p = ε−1 p∗, σ = ε−2 σ∗.

Everything else is of order unity, including vertical scales. We
immediately drop the ∗ superscripts, and expand the fields as

ũα = ũα
(0) + ε ũα

(1) + . . . ,

p̃ = p̃(0) + ε p̃(1) + . . . .

Note that we leave ṽ unexpanded (more on this later).
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Order ε0

At order ε0, the velocity field and pressure satisfy

∂2ũα
(0)

∂y2
= ∂αp̃(0) − ĝα

s ,
∂p̃(0)

∂y
= 0 ,

where ∂α = Gαβ ∂β. These are readily integrated to give

ũα
(0) = −1

2 (ĝα
s + σ ∂ακ) y(y − 2η), p̃(0) = −σκ,

where the boundary conditions have been applied.
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Order ε1

At order ε,

∂2ũα
(1)

∂y2
= (κδβ

α + 2 Kβ
α)

∂ũβ
(0)

∂y
+∂αp̃(1)+2y Kβ

α∂β p̃(0)−y ĝβ
s Kβ

α ,
∂p̃(1)

∂y
= ĝy ,

with solution

ũα
(1) = Aα

(1)y (y − 2η) + Bα
(1)y

(
y2 − 3η2

)
where the coefficients Aα

(1) and Bα
(1) involve the substrate curvature

tensor and gradients of the mean curvature.
In fact, the ε0 solution can be incorporated to the coefficient A, to
give

ũα = Aαy (y − 2η) + Bαy
(
y2 − 3η2

)
.
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The Mass Flux
The horizontal velocity field is sufficient to find the mass flux,

q̄α =

∫ η

0
ω̃ ũαdy =

∫ η

0
(1− ε κ y)ũα dy + O

(
ε2

)
,

= q̄α
grav + q̄α

surf ,

q̄α
grav = 1

3η3
{

ĝα
s − ε ĝβ

s

(
κ δβ

α + 1
2 Kβ

α
)
η + ε ĝy ∂αη

}
+ε2 1

120 η4κ {η ĝβ
s (9κ δβ

α + 11 Kβ
α)− 25 ĝy ∂αη}+ O

(
ε2

)
,

q̄α
surf = 1

3ση3
{

∂ακsurf − ε η κ ∂ακ + 1
2ε η Kβ

α ∂βκ
}

+ε2 1
120 σ η4κ {9η κ ∂ακ− 14 ηKβ

α∂βκ− 25 ∂α(κ2η + ∆η)}+ O
(
ε2

)
,

Note that we’ve kept some second-order terms but not others. The
above fluxes are only asymptotic to order ε1, but they preserve the
free-surface kinematic BC to all orders. . .
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The Vertical Velocity

The vertical velocity is obtained from mass conservation:

ṽ = − 1

1− εκy

∫ y

0
∂α ((1− εκy) ũα) dy , not expanded in ε.

Mass conservation follows from using this form for ṽ , and the
free-surface kinematic boundary condition is satisfied exactly if the
second-order terms are included in the flux.
The exact kinematic constraints are crucial for particle advection:

• Mass preservation prevents the existence of attractors in the
flow where particles bunch up.

• The kinematic boundary condition prevents particles escaping
from the top surface of the flow.

These are only exact to the extent that ∇αq̄α = 0 is satisfied
numerically, but this is a much smaller error than ε2.
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The Shape of the Substrate

The shape of the bottom substrate is given by the vector X(x1, x2).
The generality of the formulation allows us to choose (x1, x2) as
cylindrical (or any other) coordinates, which could be used to
describe a ‘bumpy fibre.’ However, we stick to Cartesian and write

X(x1, x2) = (x1 x2 f (x1, x2))T ,

which rules out a multivalued substrate (no overhangs). f (x1, x2)
gives the vertical height of the substrate at (x1, x2).
We assume the substrate is periodic in both directions.
The flow is driven by the tilt θ of the gravity vector with respect to
the substrate:

ĝ = (sin θ cos φ sin θ sin φ − cos θ)T

18 / 25



Introduction Coordinates Equations Numerical Solution Trajectories Conclusions

Numerical Solution
We now solve ∇αq̄α = 0 for the height field η(x1, x2). The
pictures below are for

f (x1, x2) = f0 sin(2πx1) sin(2πx2).

Parameters: f0 = 0.05, ε = 0.06, θ = 0.1, φ = 0, σ = 0.
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Numerical Error in Kinematic BC

For a numerical resolution of 100× 100,

Uncorrected Corrected

Kinematic BC error 4× 10−4 2× 10−9

Incompressibility error 4× 10−3 9× 10−7

The factor of 104–105 improvement makes a huge difference when
doing particle advection: it means that particles can skirt the
surface without escaping.
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A Typical Trajectory
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• The particle explores the top and bottom of the layer.

• It is confined in a narrow region in x2.
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Poincaré Section
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Breaking the Symmetry

f (x1, x2) = f0
{
sin(2πx1) sin(2πx2) + δ sin(4πx2)

}
, δ = 0.2
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• Two types of trajectories: straight and diagonal.
• Explore a wide range in x2.
• The diagonal trajectories are chaotic: ‘jump’ between

channels.
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Chaotic Poincaré Section

The mixed regular–chaotic phase space is evident in the section:
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Conclusions

• Relate substrate properties (curvature tensor) to chaotic
features.

• Applications? Coating flows?

• Experiments

• Time-dependence: induce chaotic mixing by vibrating the
substrate or sending waves through it.

• Effect of surfactants, surface tension, Marangoni stresses. . .
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